Files
FireBee_SVN/BaS_gcc/x86emu/biosemu.c
2013-12-29 19:00:24 +00:00

682 lines
16 KiB
C

#define RINFO_ONLY
#include "x86debug.h"
#include "radeonfb.h"
#include "bas_printf.h"
#include "bas_string.h"
#include "util.h"
#include "driver_mem.h"
#include "x86emu.h"
#include "pci.h"
#include "pci_ids.h"
#define USE_SDRAM
#define DIRECT_ACCESS
#define MEM_WB(where, what) wrb(where, what)
#define MEM_WW(where, what) wrw(where, what)
#define MEM_WL(where, what) wrl(where, what)
#define MEM_RB(where) rdb(where)
#define MEM_RW(where) rdw(where)
#define MEM_RL(where) rdl(where)
#define PCI_VGA_RAM_IMAGE_START 0xC0000
#define PCI_RAM_IMAGE_START 0xD0000
#define SYS_BIOS 0xF0000
#define SIZE_EMU 0x100000
typedef struct
{
long ident;
union
{
long l;
short i[2];
char c[4];
} v;
} COOKIE;
struct rom_header
{
uint16_t signature;
uint8_t size;
uint8_t init[3];
uint8_t reserved[0x12];
uint16_t data;
};
struct pci_data
{
uint32_t signature;
uint16_t vendor;
uint16_t device;
uint16_t reserved_1;
uint16_t dlen;
uint8_t drevision;
uint8_t class_lo;
uint16_t class_hi;
uint16_t ilen;
uint16_t irevision;
uint8_t type;
uint8_t indicator;
uint16_t reserved_2;
};
struct radeonfb_info *rinfo_biosemu;
uint16_t offset_port;
uint32_t offset_mem;
static uint32_t offset_io;
static uint32_t config_address_reg;
extern int pcibios_handler();
extern COOKIE *get_cookie(long id);
extern short restart, os_magic;
X86EMU_sysEnv _X86EMU_env;
/* general software interrupt handler */
uint32_t getIntVect(int num)
{
return MEM_RW(num << 2) + (MEM_RW((num << 2) + 2) << 4);
}
/* FixME: There is already a push_word() in the emulator */
void pushw(uint16_t val)
{
X86_ESP -= 2;
MEM_WW(((uint32_t) X86_SS << 4) + X86_SP, val);
}
int run_bios_int(int num)
{
uint32_t eflags;
eflags = X86_EFLAGS;
pushw(eflags);
pushw(X86_CS);
pushw(X86_IP);
X86_CS = MEM_RW((num << 2) + 2);
X86_IP = MEM_RW(num << 2);
return 1;
}
static uint8_t inb(uint16_t port)
{
uint8_t val = 0;
if ((port >= offset_port) && (port <= offset_port + 0xFF))
{
dbg("inb(");
val = *(uint8_t *)(offset_io+(uint32_t)port);
dbg("0x%x) = 0x%x\r\n", port, val);
}
return val;
}
static uint16_t inw(uint16_t port)
{
uint16_t val = 0;
if ((port >= offset_port) && (port <= offset_port+0xFF))
{
dbg("inw(");
val = swpw(*(uint16_t *)(offset_io+(uint32_t)port));
dbg("0x%x) = 0x%x\r\n", port, val);
}
return val;
}
static uint32_t inl(uint16_t port)
{
uint32_t val = 0;
if ((port >= offset_port) && (port <= offset_port+0xFF))
{
dbg("inl(");
val = swpl(*(uint32_t *)(offset_io+(uint32_t)port));
dbg("0x%x) = 0x%x\r\n", port, val);
}
else if (port == 0xCF8)
{
dbg("inl(");
val = config_address_reg;
dbg("0x%x) = 0x%x\r\n", port, val);
}
else if ((port == 0xCFC) && ((config_address_reg & 0x80000000) != 0))
{
switch (config_address_reg & 0xFC)
{
case PCIIDR:
val = ((uint32_t) rinfo_biosemu->chipset << 16) + PCI_VENDOR_ID_ATI;
break;
case PCIBAR1:
val = (uint32_t) offset_port + 1;
break;
default:
val = pci_read_config_longword(rinfo_biosemu->handle, config_address_reg & 0xFC);
break;
}
dbg("inl(0x%x) = 0x%x\r\n", port, val);
}
return val;
}
void outb(uint8_t val, uint16_t port)
{
if ((port >= offset_port) && (port <= offset_port + 0xFF))
{
dbg("outb(0x%x, 0x%x)\r\n", port, val);
*(uint8_t *)(offset_io + (uint32_t) port) = val;
}
}
void outw(uint16_t val, uint16_t port)
{
if ((port >= offset_port) && (port <= offset_port + 0xFF))
{
dbg("outw(0x%x, 0x%x)\r\n", port, val);
*(uint16_t *)(offset_io + (uint32_t) port) = swpw(val);
}
}
void outl(uint32_t val, uint16_t port)
{
if ((port >= offset_port) && (port <= offset_port + 0xFF))
{
dbg("outl(0x%x, 0x%x)\r\n", port, val);
*(uint32_t *)(offset_io + (uint32_t) port) = swpl(val);
}
else if (port == 0xCF8)
{
dbg("outl(0x%x, 0x%x)\r\n", port, val);
config_address_reg = val;
}
else if ((port == 0xCFC) && ((config_address_reg & 0x80000000) !=0))
{
if ((config_address_reg & 0xFC) == PCIBAR1)
offset_port = (uint16_t)val & 0xFFFC;
else
{
dbg("outl(0x%x, 0x%x)\r\n", port, val);
pci_write_config_longword(rinfo_biosemu->handle, config_address_reg & 0xFC, val);
}
}
}
/* Interrupt multiplexer */
void do_int(int num)
{
int ret = 0;
switch (num)
{
#ifndef _PC
case 0x10:
case 0x42:
case 0x6D:
if (getIntVect(num) == 0x0000)
dbg("uninitialised int vector\r\n");
if (getIntVect(num) == 0xFF065)
{
//ret = int42_handler();
ret = 1;
}
break;
#endif
case 0x15:
//ret = int15_handler();
ret = 1;
break;
case 0x16:
//ret = int16_handler();
ret = 0;
break;
case 0x1A:
ret = pcibios_handler();
ret = 1;
break;
case 0xe6:
//ret = intE6_handler();
ret = 0;
break;
default:
break;
}
if (!ret)
ret = run_bios_int(num);
}
#if 0
void reset_int_vect(void)
{
/*
* This table is normally located at 0xF000:0xF0A4. However, int 0x42,
* function 0 (Mode Set) expects it (or a copy) somewhere in the bottom
* 64kB. Note that because this data doesn't survive POST, int 0x42 should
* only be used during EGA/VGA BIOS initialisation.
*/
static const uint8_t VideoParms[] = {
/* Timing for modes 0x00 & 0x01 */
0x38, 0x28, 0x2d, 0x0a, 0x1f, 0x06, 0x19, 0x1c,
0x02, 0x07, 0x06, 0x07, 0x00, 0x00, 0x00, 0x00,
/* Timing for modes 0x02 & 0x03 */
0x71, 0x50, 0x5a, 0x0a, 0x1f, 0x06, 0x19, 0x1c,
0x02, 0x07, 0x06, 0x07, 0x00, 0x00, 0x00, 0x00,
/* Timing for modes 0x04, 0x05 & 0x06 */
0x38, 0x28, 0x2d, 0x0a, 0x7f, 0x06, 0x64, 0x70,
0x02, 0x01, 0x06, 0x07, 0x00, 0x00, 0x00, 0x00,
/* Timing for mode 0x07 */
0x61, 0x50, 0x52, 0x0f, 0x19, 0x06, 0x19, 0x19,
0x02, 0x0d, 0x0b, 0x0c, 0x00, 0x00, 0x00, 0x00,
/* Display page lengths in little endian order */
0x00, 0x08, /* Modes 0x00 and 0x01 */
0x00, 0x10, /* Modes 0x02 and 0x03 */
0x00, 0x40, /* Modes 0x04 and 0x05 */
0x00, 0x40, /* Modes 0x06 and 0x07 */
/* Number of columns for each mode */
40, 40, 80, 80, 40, 40, 80, 80,
/* CGA Mode register value for each mode */
0x2c, 0x28, 0x2d, 0x29, 0x2a, 0x2e, 0x1e, 0x29,
/* Padding */
0x00, 0x00, 0x00, 0x00
};
int i;
for(i = 0; i < sizeof(VideoParms); i++)
MEM_WB(i + (0x1000 - sizeof(VideoParms)), VideoParms[i]);
MEM_WW(0x1d << 2, 0x1000 - sizeof(VideoParms));
MEM_WW((0x1d << 2) + 2, 0);
DPRINT("SETUP INT\r\n");
MEM_WW(0x10 << 2, 0xf065);
MEM_WW((0x10 << 2) + 2, SYS_BIOS >> 4);
MEM_WW(0x42 << 2, 0xf065);
MEM_WW((0x42 << 2) + 2, SYS_BIOS >> 4);
MEM_WW(0x6D << 2, 0xf065);
MEM_WW((0x6D << 2) + 2, SYS_BIOS >> 4);
}
/*
* here we are really paranoid about faking a "real"
* BIOS. Most of this information was pulled from
* dosemu.
*/
void setup_int_vect(void)
{
int i;
/* let the int vects point to the SYS_BIOS seg */
for(i = 0; i < 0x80; i++)
{
MEM_WW(i << 2, 0);
MEM_WW((i << 2) + 2, SYS_BIOS >> 4);
}
reset_int_vect();
/* font tables default location (int 1F) */
MEM_WW(0x1f << 2, 0xfa6e);
/* int 11 default location (Get Equipment Configuration) */
MEM_WW(0x11 << 2, 0xf84d);
/* int 12 default location (Get Conventional Memory Size) */
MEM_WW(0x12 << 2, 0xf841);
/* int 15 default location (I/O System Extensions) */
MEM_WW(0x15 << 2, 0xf859);
/* int 1A default location (RTC, PCI and others) */
MEM_WW(0x1a << 2, 0xff6e);
/* int 05 default location (Bound Exceeded) */
MEM_WW(0x05 << 2, 0xff54);
/* int 08 default location (Double Fault) */
MEM_WW(0x08 << 2, 0xfea5);
/* int 13 default location (Disk) */
MEM_WW(0x13 << 2, 0xec59);
/* int 0E default location (Page Fault) */
MEM_WW(0x0e << 2, 0xef57);
/* int 17 default location (Parallel Port) */
MEM_WW(0x17 << 2, 0xefd2);
/* fdd table default location (int 1e) */
MEM_WW(0x1e << 2, 0xefc7);
/* Set Equipment flag to VGA */
i = MEM_RB(0x0410) & 0xCF;
MEM_WB(0x0410, i);
/* XXX Perhaps setup more of the BDA here. See also int42(0x00). */
}
#endif
static int setup_system_bios(void *base_addr)
{
char *base = (char *) base_addr;
int i;
/*
* we trap the "industry standard entry points" to the BIOS
* and all other locations by filling them with "hlt"
* TODO: implement hlt-handler for these
*/
// for(i=0; i<0x10000; base[i++]=0xF4);
for(i=0; i<SIZE_EMU; base[i++]=0xF4);
/* set bios date */
//strcpy(base + 0x0FFF5, "06/11/99");
/* set up eisa ident string */
//strcpy(base + 0x0FFD9, "PCI_ISA");
/* write system model id for IBM-AT */
//*((unsigned char *) (base + 0x0FFFE)) = 0xfc;
return(1);
}
#if 0
static void memsetw(uint32_t addr, uint16_t value, uint16_t count)
{
while(--count)
{
wrw(addr, value);
addr += 2;
}
}
static uint8_t find_vga_entry(uint8_t mode)
{
uint8_t i,line=0xFF;
for(i=0;i<=MODE_MAX;i++)
{
if (vga_modes[i].svgamode==mode)
{
line=i;
break;
}
}
return(line);
}
void biosfn_set_video_mode(uint8_t mode)
{
uint8_t line,mmask,*palette=0,vpti;
uint16_t i,twidth,theightm1,cheight;
uint8_t modeset_ctl=0;
uint16_t crtc_addr;
// find the entry in the video modes
line=find_vga_entry(mode);
if (line==0xFF)
return;
vpti=line_to_vpti[line];
twidth=video_param_table[vpti].twidth;
theightm1=video_param_table[vpti].theightm1;
cheight=video_param_table[vpti].cheight;
// if palette loading (bit 3 of modeset ctl = 0)
if ((modeset_ctl&0x08)==0)
{
// Set the PEL mask
outb(vga_modes[line].pelmask,VGAREG_PEL_MASK);
// Set the whole dac always, from 0
outb(0x00,VGAREG_DAC_WRITE_ADDRESS);
// From which palette
switch(vga_modes[line].dacmodel)
{
case 0: palette=palette0; break;
case 1: palette=palette1; break;
case 2: palette=palette2; break;
case 3: palette=palette3; break;
}
// Always 256*3 values
for(i=0;i<0x0100;i++)
{
if (i<=dac_regs[vga_modes[line].dacmodel])
{
outb(palette[(i*3)+0],VGAREG_DAC_DATA);
outb(palette[(i*3)+1],VGAREG_DAC_DATA);
outb(palette[(i*3)+2],VGAREG_DAC_DATA);
}
else
{
outb(0,VGAREG_DAC_DATA);
outb(0,VGAREG_DAC_DATA);
outb(0,VGAREG_DAC_DATA);
}
}
if ((modeset_ctl&0x02)==0x02)
{
uint8_t r,g,b;
uint16_t i;
uint16_t index,start=0;
inb(VGAREG_ACTL_RESET);
outb(0x00,VGAREG_ACTL_ADDRESS);
for(index = 0; index < 0x100; index++)
{
// set read address and switch to read mode
outb(start,VGAREG_DAC_READ_ADDRESS);
// get 6-bit wide RGB data values
r=inb(VGAREG_DAC_DATA);
g=inb(VGAREG_DAC_DATA);
b=inb(VGAREG_DAC_DATA);
// intensity = ( 0.3 * Red ) + ( 0.59 * Green ) + ( 0.11 * Blue )
i = ((77*r + 151*g + 28*b) + 0x80) >> 8;
if (i>0x3f)
i=0x3f;
// set write address and switch to write mode
outb(start,VGAREG_DAC_WRITE_ADDRESS);
// write new intensity value
outb(i & 0xff,VGAREG_DAC_DATA);
outb(i & 0xff,VGAREG_DAC_DATA);
outb(i & 0xff,VGAREG_DAC_DATA);
start++;
}
inb(VGAREG_ACTL_RESET);
outb(0x20,VGAREG_ACTL_ADDRESS);
}
}
// Reset Attribute Ctl flip-flop
inb(VGAREG_ACTL_RESET);
// Set Attribute Ctl
for(i=0;i<=0x13;i++)
{
outb(i,VGAREG_ACTL_ADDRESS);
outb(video_param_table[vpti].actl_regs[i],VGAREG_ACTL_WRITE_DATA);
}
outb(0x14,VGAREG_ACTL_ADDRESS);
outb(0x00,VGAREG_ACTL_WRITE_DATA);
// Set Sequencer Ctl
outb(0,VGAREG_SEQU_ADDRESS);
outb(0x03,VGAREG_SEQU_DATA);
for(i=1;i<=4;i++)
{
outb(i,VGAREG_SEQU_ADDRESS);
outb(video_param_table[vpti].sequ_regs[i - 1],VGAREG_SEQU_DATA);
}
// Set Grafx Ctl
for(i=0;i<=8;i++)
{
outb(i,VGAREG_GRDC_ADDRESS);
outb(video_param_table[vpti].grdc_regs[i],VGAREG_GRDC_DATA);
}
// Set CRTC address VGA
crtc_addr=VGAREG_VGA_CRTC_ADDRESS;
// Disable CRTC write protection
outw(crtc_addr,0x0011);
// Set CRTC regs
for(i=0;i<=0x18;i++)
{
outb(i,crtc_addr);
outb(video_param_table[vpti].crtc_regs[i],crtc_addr+1);
}
// Set the misc register
outb(video_param_table[vpti].miscreg,VGAREG_WRITE_MISC_OUTPUT);
// Enable video
outb(0x20,VGAREG_ACTL_ADDRESS);
inb(VGAREG_ACTL_RESET);
if (mode<0x0d)
memsetw(vga_modes[line].sstart,0x0000,0x4000); // 32k
else
{
outb(0x02, VGAREG_SEQU_ADDRESS);
mmask = inb(VGAREG_SEQU_DATA);
outb(0x0f, VGAREG_SEQU_DATA); // all planes
memsetw(vga_modes[line].sstart, 0x0000, 0x8000); // 64k
outb(mmask, VGAREG_SEQU_DATA);
}
}
#endif
void run_bios(struct radeonfb_info *rinfo)
{
long i, j;
unsigned char *ptr;
struct rom_header *rom_header;
struct pci_data *rom_data;
unsigned long rom_size=0;
unsigned long image_size=0;
unsigned long biosmem = 0x01000000; /* when run_bios() is called, SDRAM is valid but not added to the system */
unsigned long addr;
unsigned short initialcs;
unsigned short initialip;
unsigned short devfn = (unsigned short) rinfo->handle;
X86EMU_intrFuncs intFuncs[256];
if ((rinfo->mmio_base == NULL) || (rinfo->io_base == NULL))
{
dbg("%s: rinfo->mmio_base = %p, rinfo->io_base = %p\r\n", __FUNCTION__);
return;
}
rinfo_biosemu = rinfo;
config_address_reg = 0;
offset_port = 0x300;
#ifdef DIRECT_ACCESS
offset_io = (uint32_t) rinfo->io_base - (uint32_t) offset_port;
offset_mem = (uint32_t) rinfo->fb_base - 0xA0000;
#else
offset_io = rinfo->io_base_phys -(uint32_t) offset_port;
offset_mem = rinfo->fb_base_phys - 0xA0000;
#endif
rom_header = (struct rom_header *) 0;
do
{
rom_header = (struct rom_header *)((unsigned long)rom_header + image_size); // get next image
rom_data = (struct pci_data *)((unsigned long)rom_header + (unsigned long)BIOS_IN16((long)&rom_header->data));
image_size = (unsigned long)BIOS_IN16((long)&rom_data->ilen) * 512;
} while ((BIOS_IN8((long) &rom_data->type) != 0) && (BIOS_IN8((long) &rom_data->indicator) != 0)); // make sure we got x86 version
if (BIOS_IN8((long) &rom_data->type) != 0)
{
dbg("%s: ROM data type = 0x%x\r\n", __FUNCTION__, BIOS_IN8((long) &rom_data->type));
return;
}
rom_size = (unsigned long) BIOS_IN8((long) &rom_header->size) * 512;
if (PCI_CLASS_DISPLAY_VGA == BIOS_IN16((long) &rom_data->class_hi))
{
biosmem = driver_mem_alloc(SIZE_EMU);
if (biosmem == 0)
{
dbg("%s: could not allocate X86 BIOS memory\r\n", __FUNCTION__);
return;
}
memset((char *) biosmem, 0, SIZE_EMU);
setup_system_bios((char *) biosmem);
dbg("Copying VGA ROM Image from %p to %p (0x%lx bytes)\r\n", (long) rinfo->bios_seg + (long) rom_header,
biosmem + PCI_VGA_RAM_IMAGE_START, rom_size);
{
long bytes_align = (long) rom_header & 3;
ptr = (unsigned char *) biosmem;
i = (long) rom_header;
j = PCI_VGA_RAM_IMAGE_START;
if (bytes_align)
for(; i < 4 - bytes_align; ptr[j++] = BIOS_IN8(i++));
for(; i < (long) rom_header + rom_size; *((unsigned long *)&ptr[j]) = swpl(BIOS_IN32(i)), i += 4, j += 4);
}
addr = PCI_VGA_RAM_IMAGE_START;
}
else
{
#ifdef USE_SDRAM
#if 0
if (os_magic)
{
biosmem = Mxalloc(SIZE_EMU, 3);
if (biosmem == 0)
return;
}
#endif
#else
biosmem = Mxalloc(SIZE_EMU, 0);
if (biosmem == 0)
return;
#endif /* USE_SDRAM */
setup_system_bios((char *)biosmem);
memset((char *)biosmem, 0, SIZE_EMU);
dbg("Copying non-VGA ROM Image from %p to %p (0x%lx bytes)\r\n",
(long) rinfo->bios_seg + (long) rom_header,
biosmem + PCI_RAM_IMAGE_START,
rom_size);
ptr = (unsigned char *) biosmem;
for (i = (long) rom_header, j = PCI_RAM_IMAGE_START; i < (long) rom_header+rom_size; ptr[j++] = BIOS_IN8(i++));
addr = PCI_RAM_IMAGE_START;
}
initialcs = (addr & 0xF0000) >> 4;
initialip = (addr + 3) & 0xFFFF;
X86EMU_setMemBase((void *) biosmem, SIZE_EMU);
for (i = 0; i < 256; i++)
intFuncs[i] = do_int;
X86EMU_setupIntrFuncs(intFuncs);
{
char *date = "01/01/99";
for (i = 0; date[i]; i++)
wrb(0xffff5 + i, date[i]);
wrb(0xffff7, '/');
wrb(0xffffa, '/');
}
{
/* FixME: move PIT init to its own file */
outb(0x36, 0x43);
outb(0x00, 0x40);
outb(0x00, 0x40);
}
// setup_int_vect();
/* cpu setup */
X86_AX = devfn ? devfn : 0xff;
X86_DX = 0x80;
X86_EIP = initialip;
X86_CS = initialcs;
/* Initialize stack and data segment */
X86_SS = initialcs;
X86_SP = 0xfffe;
X86_DS = 0x0040;
X86_ES = 0x0000;
/* We need a sane way to return from bios
* execution. A hlt instruction and a pointer
* to it, both kept on the stack, will do.
*/
pushw(0xf4f4); /* hlt; hlt */
// pushw(0x10cd); /* int #0x10 */
// pushw(0x0013); /* 320 x 200 x 256 colors */
// // pushw(0x000F); /* 640 x 350 x mono */
// pushw(0xb890); /* nop, mov ax,#0x13 */
pushw(X86_SS);
pushw(X86_SP + 2);
#ifdef DEBUG_X86EMU
X86EMU_trace_on();
X86EMU_set_debug(DEBUG_DECODE_F | DEBUG_TRACE_F);
#endif
dbg("X86EMU entering emulator\r\n");
//*vblsem = 0;
X86EMU_exec();
//*vblsem = 1;
dbg("X86EMU halted\r\n");
// biosfn_set_video_mode(0x13); /* 320 x 200 x 256 colors */
#ifdef USE_SDRAM
#if 0
if (os_magic)
{
memset((char *)biosmem, 0, SIZE_EMU);
Mfree(biosmem);
}
#endif
#else
memset((char *) biosmem, 0, SIZE_EMU);
driver_mem_free(biosmem);
#endif /* USE_SDRAM */
}