Files
FireBee_SVN/dma/dma.c
Markus Fröschle d860191121 replaced DMA API routines by fresh download with originals
moved more interrupt handlers to generalized handler
cleaned up lowlevel interrupt handling
fixed wrong assignment of interrupt masks
reformatted
2015-01-11 10:27:36 +00:00

694 lines
18 KiB
C

/*
* dma.c
*
*
* This file is part of BaS_gcc.
*
* BaS_gcc is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* BaS_gcc is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with BaS_gcc. If not, see <http://www.gnu.org/licenses/>.
*
* Created on: 26.02.2013
* Author: Markus Fröschle
*/
#include "dma.h"
#include <MCD_dma.h>
#include "mcd_initiators.h"
#include "bas_printf.h"
#include "bas_string.h"
#include "cache.h"
#include "exceptions.h"
#if defined(MACHINE_FIREBEE)
#include "firebee.h"
#elif defined(MACHINE_M5484LITE)
#include "m5484l.h"
#elif defined(MACHINE_M54455)
#include "m54455.h"
#else
#error "unknown machine!"
#endif /* MACHINE_FIREBEE */
#define DBG_DMA
#ifdef DBG_DMA
#define dbg(format, arg...) do { xprintf("DEBUG: %s(): " format, __FUNCTION__, ##arg); } while (0)
#else
#define dbg(format, arg...) do { ; } while (0)
#endif /* DBG_DMA */
#define err(format, arg...) do { xprintf("ERROR: %s(): " format, __FUNCTION__, ##arg); } while (0)
extern char _SYS_SRAM[];
#define SYS_SRAM &_SYS_SRAM[0]
struct dma_channel
{
int req;
void (*handler)(void);
};
static char used_reqs[32] =
{
DMA_ALWAYS, DMA_DSPI_RXFIFO, DMA_DSPI_TXFIFO, DMA_DREQ0,
DMA_PSC0_RX, DMA_PSC0_TX, DMA_USB_EP0, DMA_USB_EP1,
DMA_USB_EP2, DMA_USB_EP3, DMA_PCI_TX, DMA_PCI_RX,
DMA_PSC1_RX, DMA_PSC1_TX, DMA_I2C_RX, DMA_I2C_TX,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0
};
static struct dma_channel dma_channel[NCHANNELS] =
{
{-1, NULL}, {-1, NULL}, {-1, NULL}, {-1, NULL},
{-1, NULL}, {-1, NULL}, {-1, NULL}, {-1, NULL},
{-1, NULL}, {-1, NULL}, {-1, NULL}, {-1, NULL},
{-1, NULL}, {-1, NULL}, {-1, NULL}, {-1, NULL},
};
/*
* Enable all DMA interrupts
*
* Parameters:
* pri Interrupt Priority
* lvl Interrupt Level
*/
void dma_irq_enable(uint8_t lvl, uint8_t pri)
{
/* Setup the DMA ICR (#48) */
MCF_INTC_ICR48 = MCF_INTC_ICR_IP(pri) |
MCF_INTC_ICR_IL(lvl);
dbg("DMA irq assigned level %d, priority %d\r\n", lvl, pri);
/* Unmask all task interrupts */
MCF_DMA_DIMR = 0;
/* Clear the interrupt pending register */
MCF_DMA_DIPR = 0;
/* Unmask the DMA interrupt in the interrupt controller */
MCF_INTC_IMRH &= ~MCF_INTC_IMRH_INT_MASK48;
dbg("DMA task interrupts unmasked, pending interrupts cleared, interrupt controller active\r\n");
}
/*
* Disable all DMA interrupts
*/
void dma_irq_disable(void)
{
/* Mask all task interrupts */
MCF_DMA_DIMR = (uint32_t) ~0;
/* Clear any pending task interrupts */
MCF_DMA_DIPR = (uint32_t) ~0;
/* Mask the DMA interrupt in the interrupt controller */
MCF_INTC_IMRH |= MCF_INTC_IMRH_INT_MASK48;
dbg("DMA interrupts masked and disabled\r\n");
}
int dma_set_initiator(int initiator)
{
switch (initiator)
{
/* these initiators are always active */
case DMA_ALWAYS:
case DMA_DSPI_RXFIFO:
case DMA_DSPI_TXFIFO:
case DMA_DREQ0:
case DMA_PSC0_RX:
case DMA_PSC0_TX:
case DMA_USB_EP0:
case DMA_USB_EP1:
case DMA_USB_EP2:
case DMA_USB_EP3:
case DMA_PCI_TX:
case DMA_PCI_RX:
case DMA_PSC1_RX:
case DMA_I2C_RX:
case DMA_I2C_TX:
break;
case DMA_FEC0_RX:
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC16(3)) | MCF_DMA_IMCR_IMC16_FEC0RX;
used_reqs[16] = DMA_FEC0_RX;
break;
case DMA_FEC0_TX:
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC17(3)) | MCF_DMA_IMCR_IMC17_FEC0TX;
used_reqs[17] = DMA_FEC0_TX;
break;
case DMA_FEC1_RX:
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC20(3)) | MCF_DMA_IMCR_IMC20_FEC1RX;
used_reqs[20] = DMA_FEC1_RX;
break;
case DMA_FEC1_TX:
if (used_reqs[21] == 0)
{
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC21(3)) | MCF_DMA_IMCR_IMC21_FEC1TX;
used_reqs[21] = DMA_FEC1_TX;
}
else if (used_reqs[25] == 0)
{
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC25(3)) | MCF_DMA_IMCR_IMC25_FEC1TX;
used_reqs[25] = DMA_FEC1_TX;
}
else if (used_reqs[31] == 0)
{
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC31(3)) | MCF_DMA_IMCR_IMC31_FEC1TX;
used_reqs[31] = DMA_FEC1_TX;
}
else /* No empty slots */
{
err("no free slot found\r\n");
return 1;
}
break;
case DMA_DREQ1:
if (used_reqs[29] == 0)
{
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC29(3)) | MCF_DMA_IMCR_IMC29_DREQ1;
used_reqs[29] = DMA_DREQ1;
}
else if (used_reqs[21] == 0)
{
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC21(3)) | MCF_DMA_IMCR_IMC21_DREQ1;
used_reqs[21] = DMA_DREQ1;
}
else /* No empty slots */
{
err("no free slot\r\n");
return 1;
}
break;
case DMA_CTM0:
if (used_reqs[24] == 0)
{
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC24(3)) | MCF_DMA_IMCR_IMC24_CTM0;
used_reqs[24] = DMA_CTM0;
}
else /* No empty slots */
{
err("no free slot\r\n");
return 1;
}
break;
case DMA_CTM1:
if (used_reqs[25] == 0)
{
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC25(3)) | MCF_DMA_IMCR_IMC25_CTM1;
used_reqs[25] = DMA_CTM1;
}
else /* No empty slots */
{
err("no free slot\r\n");
return 1;
}
break;
case DMA_CTM2:
if (used_reqs[26] == 0)
{
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC26(3)) | MCF_DMA_IMCR_IMC26_CTM2;
used_reqs[26] = DMA_CTM2;
}
else /* No empty slots */
{
err("no free slot\r\n");
return 1;
}
break;
case DMA_CTM3:
if (used_reqs[27] == 0)
{
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC27(3)) | MCF_DMA_IMCR_IMC27_CTM3;
used_reqs[27] = DMA_CTM3;
}
else /* No empty slots */
{
err("no free slot\r\n");
return 1;
}
break;
case DMA_CTM4:
if (used_reqs[28] == 0)
{
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC28(3)) | MCF_DMA_IMCR_IMC28_CTM4;
used_reqs[28] = DMA_CTM4;
}
else /* No empty slots */
{
err("no free slot\r\n");
return 1;
}
break;
case DMA_CTM5:
if (used_reqs[29] == 0)
{
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC29(3)) | MCF_DMA_IMCR_IMC29_CTM5;
used_reqs[29] = DMA_CTM5;
}
else /* No empty slots */
{
err("no free slot\r\n");
return 1;
}
break;
case DMA_CTM6:
if (used_reqs[30] == 0)
{
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC30(3)) | MCF_DMA_IMCR_IMC30_CTM6;
used_reqs[30] = DMA_CTM6;
}
else /* No empty slots */
{
err("no free slot\r\n");
return 1;
}
break;
case DMA_CTM7:
if (used_reqs[31] == 0)
{
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC31(3)) | MCF_DMA_IMCR_IMC31_CTM7;
used_reqs[31] = DMA_CTM7;
}
else /* No empty slots */
{
err("no free slot\r\n");
return 1;
}
break;
case DMA_USBEP4:
if (used_reqs[26] == 0)
{
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC26(3)) | MCF_DMA_IMCR_IMC26_USBEP4;
used_reqs[26] = DMA_USBEP4;
}
else /* No empty slots */
{
err("no free slot\r\n");
return 1;
}
break;
case DMA_USBEP5:
if (used_reqs[27] == 0)
{
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC27(3)) | MCF_DMA_IMCR_IMC27_USBEP5;
used_reqs[27] = DMA_USBEP5;
}
else /* No empty slots */
{
err("no free slot\r\n");
return 1;
}
break;
case DMA_USBEP6:
if (used_reqs[28] == 0)
{
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC28(3)) | MCF_DMA_IMCR_IMC28_USBEP6;
used_reqs[28] = DMA_USBEP6;
}
else /* No empty slots */
{
err("no free slot\r\n");
return 1;
}
break;
case DMA_PSC2_RX:
if (used_reqs[28] == 0)
{
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC28(3)) | MCF_DMA_IMCR_IMC28_PSC2RX;
used_reqs[28] = DMA_PSC2_RX; }
else /* No empty slots */
{
err("no free slot\r\n");
return 1;
}
break;
case DMA_PSC2_TX:
if (used_reqs[29] == 0)
{
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC29(3)) | MCF_DMA_IMCR_IMC29_PSC2TX;
used_reqs[29] = DMA_PSC2_TX;
}
else /* No empty slots */
{
err("no free slot\r\n");
return 1;
}
break;
case DMA_PSC3_RX:
if (used_reqs[30] == 0)
{
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC30(3)) | MCF_DMA_IMCR_IMC30_PSC3RX;
used_reqs[30] = DMA_PSC3_RX;
}
else /* No empty slots */
{
err("no free slot\r\n");
return 1;
}
break;
case DMA_PSC3_TX:
if (used_reqs[31] == 0)
{
MCF_DMA_IMCR = (MCF_DMA_IMCR & ~MCF_DMA_IMCR_IMC31(3)) | MCF_DMA_IMCR_IMC31_PSC3TX;
used_reqs[31] = DMA_PSC3_TX;
}
else /* No empty slots */
{
err("no free slot\r\n");
return 1;
}
break;
default:
{
err("don't know what to do\r\n");
return 1;
}
}
return 0;
}
/*
* Return the initiator number for the given requestor
*
* Parameters:
* requestor Initiator/Requestor identifier
*
* Return Value:
* The initiator number (0-31) if initiator has been assigned
* 0 (always initiator) otherwise
*/
uint32_t dma_get_initiator(int requestor)
{
uint32_t i;
for (i = 0; i < sizeof(used_reqs); ++i)
{
if (used_reqs[i] == requestor)
return i;
}
err("no initiator found for requestor %d\r\n", requestor);
return 0;
}
/*
* Remove the given initiator from the active list
*
* Parameters:
* requestor Initiator/Requestor identifier
*/
void dma_free_initiator(int requestor)
{
uint32_t i;
for (i = 16; i < sizeof(used_reqs); ++i)
{
if (used_reqs[i] == requestor)
{
used_reqs[i] = 0;
break;
}
}
dbg("DMA requestor %d freed\r\n", requestor);
}
/*
* Attempt to find an available channel and mark it as used
*
* Parameters:
* requestor Initiator/Requestor identifier
*
* Return Value:
* First available channel or -1 if they are all occupied
*/
int dma_set_channel(int requestor, void (*handler)(void))
{
int i;
/* Check to see if this requestor is already assigned to a channel */
dbg("check if requestor %d is already assigned to a channel\r\n", requestor);
if ((i = dma_get_channel(requestor)) != -1)
{
return i;
}
for (i = 0; i < NCHANNELS; ++i)
{
if (dma_channel[i].req == -1)
{
dma_channel[i].req = requestor;
dma_channel[i].handler = handler;
dbg("assigned channel %d to requestor %d\r\n", i, requestor);
return i;
}
}
err("no free DMA channel found for requestor %d\r\n", requestor);
/* All channels taken */
return -1;
}
void dma_clear_channel(int channel)
{
if(channel >= 0 && channel < NCHANNELS)
{
dma_channel[channel].req = -1;
dma_channel[channel].handler = NULL;
dbg("cleared DMA channel %d\r\n", channel);
}
}
/*
* Return the channel being initiated by the given requestor
*
* Parameters:
* requestor Initiator/Requestor identifier
*
* Return Value:
* Channel that the requestor is controlling or -1 if hasn't been
* activated
*/
int dma_get_channel(int requestor)
{
uint32_t i;
for (i = 0; i < NCHANNELS; ++i)
{
if (dma_channel[i].req == requestor)
return i;
}
dbg("no channel occupied by requestor %d\r\n", requestor);
return -1;
}
/*
* Remove the channel being initiated by the given requestor from
* the active list
*
* Parameters:
* requestor Initiator/Requestor identifier
*/
void dma_free_channel(int requestor)
{
uint32_t i;
for (i = 0; i < NCHANNELS; ++i)
{
if (dma_channel[i].req == requestor)
{
dma_channel[i].req = -1;
dma_channel[i].handler = NULL;
break;
}
}
}
/*
* This is the catch-all interrupt handler for the mult-channel DMA
*/
bool dma_interrupt_handler(void *arg1, void *arg2)
{
int i, interrupts;
uint32_t ipl;
ipl = set_ipl(7); /* do not disturb */
/*
* Determine which interrupt(s) triggered by AND'ing the
* pending interrupts with those that aren't masked.
*/
interrupts = MCF_DMA_DIPR & ~MCF_DMA_DIMR;
/* Make sure we are here for a reason */
if (interrupts == 0)
{
err("not DMA interrupt!\r\n");
return 0;
}
dbg("");
/* Clear the interrupt in the pending register */
MCF_DMA_DIPR = interrupts;
for (i = 0; i < 16; ++i, interrupts >>= 1)
{
if (interrupts & 0x1)
{
/* If there is a handler, call it */
if (dma_channel[i].handler != NULL)
{
dbg("call handler for DMA channel %d (%p)\r\n", i, dma_channel[i].handler);
dma_channel[i].handler();
}
}
}
//set_ipl(ipl);
return true; /* handled */
}
/********************************************************************/
void *dma_memcpy(void *dst, void *src, size_t n)
{
int ret;
#ifdef DBG_DMA
int32_t time;
int32_t start;
int32_t end;
start = MCF_SLT0_SCNT;
#endif /* DBG_DMA */
ret = MCD_startDma(1, src, 4, dst, 4, n, 4, DMA_ALWAYS, 0, MCD_SINGLE_DMA, 0);
if (ret == MCD_OK)
{
dbg("DMA on channel 1 successfully started\r\n");
}
do
{
ret = MCD_dmaStatus(1);
#ifdef _NOT_USED_ /* suppress annoying printout for now */
switch (ret)
{
case MCD_NO_DMA:
xprintf("MCD_NO_DMA: no DMA active on this channel\r\n");
return NULL;
break;
case MCD_IDLE:
xprintf("MCD_IDLE: DMA defined but not active (initiator not ready)\r\n");
break;
case MCD_RUNNING:
xprintf("MCD_RUNNING: DMA active and working on this channel\r\n");
break;
case MCD_PAUSED:
xprintf("MCD_PAUSED: DMA defined and enabled, but currently paused\r\n");
break;
case MCD_HALTED:
xprintf("MCD_HALTED: DMA killed\r\n");
return NULL;
break;
case MCD_DONE:
xprintf("MCD_DONE: DMA finished\r\n");
break;
case MCD_CHANNEL_INVALID:
xprintf("MCD_CHANNEL_INVALID: invalid DMA channel\r\n");
return NULL;
break;
default:
xprintf("unknown DMA status %d\r\n", ret);
break;
}
#endif
} while (ret != MCD_DONE);
#ifdef DBG_DMA
end = MCF_SLT0_SCNT;
time = (start - end) / (SYSCLK / 1000) / 1000;
#endif /* DBG_DMA */
dbg("took %d ms (%f Mbytes/second)\r\n", time, n / (float) time / 1000.0);
return dst;
}
int dma_init(void)
{
int i;
int res;
dbg("MCD DMA API initialization: ");
res = MCD_initDma((dmaRegs *) &_MBAR[0x8000], SYS_SRAM, MCD_RELOC_TASKS | MCD_COMM_PREFETCH_EN);
if (res != MCD_OK)
{
err("DMA API initialization failed (0x%x)\r\n", res);
return 0;
}
/*
* make sure dma_channel array is properly initialized
*/
for (i = 0; i < NCHANNELS; i++)
{
dma_channel[i].req = -1;
dma_channel[i].handler = NULL;
}
// test
dma_memcpy((void *) 0x10000, (void *) 0x03e00000, 0x00100000); /* copy one megabyte of flash to RAM */
return 0;
}