Files
FireBee_SVN/BaS_gcc/usb/usb.c

1342 lines
36 KiB
C

/*
*
* Most of this source has been derived from the Linux USB
* project:
* (C) Copyright Linus Torvalds 1999
* (C) Copyright Johannes Erdfelt 1999-2001
* (C) Copyright Andreas Gal 1999
* (C) Copyright Gregory P. Smith 1999
* (C) Copyright Deti Fliegl 1999 (new USB architecture)
* (C) Copyright Randy Dunlap 2000
* (C) Copyright David Brownell 2000 (kernel hotplug, usb_device_id)
* (C) Copyright Yggdrasil Computing, Inc. 2000
* (usb_device_id matching changes by Adam J. Richter)
*
* Adapted for U-Boot:
* (C) Copyright 2001 Denis Peter, MPL AG Switzerland
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*/
/*
* How it works:
*
* Since this is a bootloader, the devices will not be automatic
* (re)configured on hotplug, but after a restart of the USB the
* device should work.
*
* For each transfer (except "Interrupt") we wait for completion.
*/
#include <stdint.h>
#include "bas_string.h"
#include "bas_printf.h"
#include "util.h" /* for byte swap funcs */
#include "wait.h"
#include <stdarg.h>
#include "usb.h"
#include "usb_hub.h"
#define DEBUG_USB
#ifdef DEBUG_USB
#define dbg(format, arg...) do { xprintf("DEBUG: %s(): " format, __FUNCTION__, ##arg); } while (0)
#else
#define dbg(format, arg...) do { ; } while (0)
#endif /* DEBUG_USB */
#define err(format, arg...) do { xprintf("ERROR: %s(): " format, __FUNCTION__, ##arg); } while (0)
#define info(format, arg...) do { xprintf("INFO: %s(): " format, __FUNCTION__, ##arg); } while (0)
struct hci
{
/* ------- common part -------- */
long handle; /* PCI BIOS */
const struct pci_device_id *ent;
int usbnum;
/* ---- end of common part ---- */
};
static struct usb_device *usb_dev;
int bus_index;
static int dev_index[USB_MAX_BUS];
static struct hci *controller_priv[USB_MAX_BUS];
static int asynch_allowed;
static struct devrequest *setup_packet;
char usb_started; /* flag for the started/stopped USB status */
/*
* some forward declarations...
*/
void usb_scan_devices(void *priv);
/*
* Init USB device controller
*/
int usb_init(int32_t handle, const struct pci_device_id *ent)
{
struct hci *priv;
int res = 0;
bus_index = 0;
if (bus_index >= USB_MAX_BUS)
{
dbg("bus_index >= USB_MAX_BUS");
return -1;
}
dev_index[bus_index] = 0;
asynch_allowed = 1;
if (handle && (ent != NULL))
{
if (driver_mem_init())
{
usb_started = 0;
dbg("driver_mem_init failed\r\n");
return -1; /* out of memory */
}
if (usb_dev == NULL)
{
usb_dev = (struct usb_device *) driver_mem_alloc(sizeof(struct usb_device) * USB_MAX_BUS * USB_MAX_DEVICE);
}
if (usb_dev == NULL)
{
usb_started = 0;
dbg("could not allocate memory\r\n");
return -1; /* out of memory */
}
}
else /* restart */
{
int i;
res = 0;
for (i = 0; i < USB_MAX_BUS; i++)
{
if (controller_priv[i] != NULL)
{
long handle = controller_priv[i]->handle;
if (handle)
{
res |= usb_init(handle, NULL); /* FIXME: recursive call!? */
}
}
}
return res;
}
usb_hub_reset(bus_index);
/* init low_level USB */
switch(ent->class)
{
case PCI_CLASS_SERIAL_USB_UHCI:
//res = uhci_usb_lowlevel_init(handle, ent, &priv);
dbg("sorry, no uhci driver available\r\n");
break;
case PCI_CLASS_SERIAL_USB_OHCI:
dbg("initialize ohci host controller interface\r\n");
res = ohci_usb_lowlevel_init(handle, ent, (void *) &priv);
break;
case PCI_CLASS_SERIAL_USB_EHCI:
dbg("initialize ehci host controller interface\r\n");
res = ehci_usb_lowlevel_init(handle, ent, (void *) &priv);
break;
default:
res = -1;
break;
}
if (!res)
{
/*
* if lowlevel init is OK, scan the bus for devices
* i.e. search HUBs and configure them
*/
if (setup_packet == NULL)
{
setup_packet = driver_mem_alloc(sizeof(struct devrequest));
if (setup_packet == NULL)
{
usb_started = 0;
dbg("could not allocate memory\r\n");
return -1; /* no memory, no USB */
}
}
xprintf("Scanning bus for devices... ");
controller_priv[bus_index] = priv;
controller_priv[bus_index]->usbnum = bus_index;
usb_scan_devices(priv);
bus_index++;
usb_started = 1;
return 0;
}
else
{
xprintf("\r\nError, couldn't init Lowlevel part\r\n");
usb_started = 0;
return -1;
}
}
/*
* Stop USB. This stops the LowLevel Part and deregisters USB devices.
*/
int usb_stop(void)
{
int i;
int res = 0;
if (usb_started)
{
asynch_allowed = 1;
usb_started = 0;
usb_hub_reset(bus_index);
driver_mem_free(setup_packet);
for (i = 0; i < USB_MAX_BUS; i++)
{
struct hci *priv = controller_priv[i];
if (priv != NULL)
{
switch(priv->ent->class)
{
#ifdef CONFIG_USB_UHCI
case PCI_CLASS_SERIAL_USB_UHCI:
res |= uhci_usb_lowlevel_stop(priv);
break;
#endif
#ifdef CONFIG_USB_OHCI
case PCI_CLASS_SERIAL_USB_OHCI:
res |= ohci_usb_lowlevel_stop(priv);
break;
#endif
#ifdef CONFIG_USB_EHCI
case PCI_CLASS_SERIAL_USB_EHCI:
res |= ehci_usb_lowlevel_stop(priv);
break;
#endif
}
}
}
bus_index = 0;
driver_mem_release(); /* release all driver mem */
}
return res;
}
void usb_enable_interrupt(int enable)
{
ohci_usb_enable_interrupt(enable);
ehci_usb_enable_interrupt(enable);
}
/*
* disables the asynch behaviour of the control message. This is used for data
* transfers that uses the exclusiv access to the control and bulk messages.
*/
void usb_disable_asynch(int disable)
{
asynch_allowed = !disable;
}
/*
* Message wrappers.
*
*/
/*
* submits an Interrupt Message
*/
int usb_submit_int_msg(struct usb_device *dev, uint32_t pipe, void *buffer, int transfer_len, int interval)
{
struct hci *priv = (struct hci *) dev->priv_hcd;
int ret = 0;
switch(priv->ent->class)
{
case PCI_CLASS_SERIAL_USB_OHCI:
ret = ohci_submit_int_msg(dev, pipe, buffer, transfer_len, interval);
break;
case PCI_CLASS_SERIAL_USB_EHCI:
ret = ehci_submit_int_msg(dev, pipe, buffer, transfer_len, interval);
break;
default:
ret = -1;
break;
}
return ret;
}
/*
* submits a control message and waits for completion (at least timeout * 1ms)
* If timeout is 0, we don't wait for completion (used for example to set and
* clear keyboards LEDs). For data transfers, (storage transfers) we don't
* allow control messages with 0 timeout, by previousely resetting the flag
* asynch_allowed (usb_disable_asynch(1)).
* returns the transfered length if OK or -1 if error. The transfered length
* and the current status are stored in the dev->act_len and dev->status.
*/
int usb_control_msg(struct usb_device *dev, unsigned int pipe,
unsigned char request, unsigned char requesttype,
unsigned short value, unsigned short index,
void *data, unsigned short size, int timeout)
{
struct hci *priv = (struct hci *) dev->priv_hcd;
if ((timeout == 0) && (!asynch_allowed))
{
/* request for a asynch control pipe is not allowed */
dbg("request for an async control pipe is not allowed\r\n");
return -1;
}
/* set setup command */
setup_packet->requesttype = requesttype;
setup_packet->request = request;
setup_packet->value = swpw(value);
setup_packet->index = swpw(index);
setup_packet->length = swpw(size);
dbg("usb_control_msg: request: 0x%X, requesttype: 0x%X, value 0x%X index 0x%X length 0x%X\r\n", request, requesttype, value, index, size);
switch(priv->ent->class)
{
case PCI_CLASS_SERIAL_USB_OHCI:
dev->status = USB_ST_NOT_PROC; /* not yet processed */
ohci_submit_control_msg(dev, pipe, data, size, setup_packet);
break;
case PCI_CLASS_SERIAL_USB_EHCI:
dev->status = USB_ST_NOT_PROC; /* not yet processed */
ehci_submit_control_msg(dev, pipe, data, size, setup_packet);
break;
default:
return -1;
}
if (timeout == 0)
{
return (int) size;
}
if (dev->status != 0)
{
/*
* Let's wait a while for the timeout to elapse.
* It has no real use, but it keeps the interface happy.
*/
return -1;
}
return dev->act_len;
}
/*
* submits bulk message, and waits for completion. returns 0 if Ok or
* -1 if Error.
* synchronous behavior
*/
int usb_bulk_msg(struct usb_device *dev, unsigned int pipe, void *data, int len, int *actual_length, int timeout)
{
struct hci *priv = (struct hci *) dev->priv_hcd;
if (len < 0)
{
return -1;
}
switch(priv->ent->class)
{
case PCI_CLASS_SERIAL_USB_OHCI:
dev->status = USB_ST_NOT_PROC; /* not yet processed */
ohci_submit_bulk_msg(dev, pipe, data, len);
break;
case PCI_CLASS_SERIAL_USB_EHCI:
dev->status = USB_ST_NOT_PROC; /* not yet processed */
ehci_submit_bulk_msg(dev, pipe, data, len);
break;
default:
return -1;
}
while (timeout--)
{
if (!((volatile uint32_t) dev->status & USB_ST_NOT_PROC)) /* FIXME: this volatile does nothing! */
break;
wait(1);
}
*actual_length = dev->act_len;
if (dev->status == 0)
{
return 0;
}
else
{
return -1;
}
}
/*
* Max Packet stuff
*/
/*
* returns the max packet size, depending on the pipe direction and
* the configurations values
*/
int usb_maxpacket(struct usb_device *dev, uint32_t pipe)
{
/* direction is out -> use emaxpacket out */
if ((pipe & USB_DIR_IN) == 0)
{
return dev->epmaxpacketout[((pipe >> 15) & 0xf)];
}
else
{
return dev->epmaxpacketin[((pipe >> 15) & 0xf)];
}
}
/*
* The routine usb_set_maxpacket_ep() is extracted from the loop of routine
* usb_set_maxpacket(), because the optimizer of GCC 4.x chokes on this routine
* when it is inlined in 1 single routine. What happens is that the register r3
* is used as loop-count 'i', but gets overwritten later on.
* This is clearly a compiler bug, but it is easier to workaround it here than
* to update the compiler (Occurs with at least several GCC 4.{1,2},x
* CodeSourcery compilers like e.g. 2007q3, 2008q1, 2008q3 lite editions on ARM)
*
* We probably do not need that for Coldfire - at least I hope so.
*/
static void usb_set_maxpacket_ep(struct usb_device *dev, struct usb_endpoint_descriptor *ep)
{
int b;
b = ep->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
if ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_CONTROL)
{
/* Control => bidirectional */
dev->epmaxpacketout[b] = ep->wMaxPacketSize;
dev->epmaxpacketin[b] = ep->wMaxPacketSize;
dbg("##Control EP epmaxpacketout/in[%d] = %d\r\n", b, dev->epmaxpacketin[b]);
}
else
{
if ((ep->bEndpointAddress & 0x80) == 0)
{
/* OUT Endpoint */
if (ep->wMaxPacketSize > dev->epmaxpacketout[b])
{
dev->epmaxpacketout[b] = ep->wMaxPacketSize;
dbg("##EP epmaxpacketout[%d] = %d\r\n", b, dev->epmaxpacketout[b]);
}
}
else
{
/* IN Endpoint */
if (ep->wMaxPacketSize > dev->epmaxpacketin[b])
{
dev->epmaxpacketin[b] = ep->wMaxPacketSize;
dbg("##EP epmaxpacketin[%d] = %d\r\n", b, dev->epmaxpacketin[b]);
}
} /* if out */
} /* if control */
}
/*
* set the max packed value of all endpoints in the given configuration
*/
int usb_set_maxpacket(struct usb_device *dev)
{
int i;
int ii;
for (i = 0; i < dev->config.bNumInterfaces; i++)
{
for (ii = 0; ii < dev->config.if_desc[i].bNumEndpoints; ii++)
{
usb_set_maxpacket_ep(dev,&dev->config.if_desc[i].ep_desc[ii]);
}
}
return 0;
}
/*
* Parse the config, located in buffer, and fills the dev->config structure.
* Note that all little/big endian swapping are done automatically.
*/
int usb_parse_config(struct usb_device *dev, unsigned char *buffer, int cfgno)
{
struct usb_descriptor_header *head;
int index;
int ifno;
int epno;
int curr_if_num;
ifno = -1;
epno = -1;
curr_if_num = -1;
dev->configno = cfgno;
head = (struct usb_descriptor_header *) &buffer[0];
if (head->bDescriptorType != USB_DT_CONFIG)
{
dbg(" ERROR: NOT USB_CONFIG_DESC %x\r\n", head->bDescriptorType);
return -1;
}
memcpy(&dev->config, buffer, buffer[0]);
dev->config.wTotalLength = swpw(dev->config.wTotalLength);
dev->config.no_of_if = 0;
index = dev->config.bLength;
/*
* Ok the first entry must be a configuration entry,
* now process the others
*/
head = (struct usb_descriptor_header *) &buffer[index];
while (index + 1 < dev->config.wTotalLength)
{
switch (head->bDescriptorType)
{
case USB_DT_INTERFACE:
if (((struct usb_interface_descriptor *) &buffer[index])->bInterfaceNumber != curr_if_num)
{
/* this is a new interface, copy new desc */
ifno = dev->config.no_of_if;
dev->config.no_of_if++;
memcpy(&dev->config.if_desc[ifno], &buffer[index], buffer[index]);
dev->config.if_desc[ifno].no_of_ep = 0;
dev->config.if_desc[ifno].num_altsetting = 1;
curr_if_num = dev->config.if_desc[ifno].bInterfaceNumber;
}
else
{
/* found alternate setting for the interface */
dev->config.if_desc[ifno].num_altsetting++;
}
break;
case USB_DT_ENDPOINT:
epno = dev->config.if_desc[ifno].no_of_ep;
/* found an endpoint */
dev->config.if_desc[ifno].no_of_ep++;
memcpy(&dev->config.if_desc[ifno].ep_desc[epno], &buffer[index], buffer[index]);
dev->config.if_desc[ifno].ep_desc[epno].wMaxPacketSize = swpw(dev->config.if_desc[ifno].ep_desc[epno].wMaxPacketSize);
dbg("if %d, ep %d\r\n", ifno, epno);
break;
default:
if (head->bLength == 0)
return 1;
dbg("unknown Descriptor Type : %x\r\n", head->bDescriptorType);
#ifdef USB_DEBUG
{
unsigned char *ch;
int i;
ch = (unsigned char *) head;
for (i = 0; i < head->bLength; i++)
{
dbg(" %02X", *ch++);
}
dbg("\r\n");
}
#endif /* USB_DEBUG */
break;
}
index += head->bLength;
head = (struct usb_descriptor_header *) &buffer[index];
}
return 1;
}
/*
* Clears an endpoint
* endp: endpoint number in bits 0-3;
* direction flag in bit 7 (1 = IN, 0 = OUT)
*/
int usb_clear_halt(struct usb_device *dev, int pipe)
{
int result;
int endp = usb_pipeendpoint(pipe) | (usb_pipein(pipe) << 7);
result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 0, endp, NULL, 0, USB_CNTL_TIMEOUT * 3);
/* don't clear if failed */
if (result < 0)
{
return result;
}
/*
* NOTE: we do not get status and verify reset was successful
* as some devices are reported to lock up upon this check..
*/
usb_endpoint_running(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe));
/* toggle is reset on clear */
usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
return 0;
}
/*
* get_descriptor type
*/
int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size)
{
int res;
res = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, (type << 8) + index, 0, buf, size, USB_CNTL_TIMEOUT);
return res;
}
/*
* gets configuration cfgno and store it in the buffer
*/
int usb_get_configuration_no(struct usb_device *dev, unsigned char *buffer, int cfgno)
{
int result;
unsigned int tmp;
struct usb_config_descriptor *config;
config = (struct usb_config_descriptor *) &buffer[0];
result = usb_get_descriptor(dev, USB_DT_CONFIG, cfgno, buffer, 9);
if (result < 9)
{
if (result < 0)
{
dbg("unable to get descriptor, error %lX\r\n", dev->status);
}
else
{
dbg("config descriptor too short (expected %i, got %i)\n", 9, result);
}
return -1;
}
tmp = swpw(config->wTotalLength);
if (tmp > USB_BUFSIZ)
{
dbg("usb_get_configuration_no: failed to get descriptor - too long: %d\r\n", tmp);
return -1;
}
result = usb_get_descriptor(dev, USB_DT_CONFIG, cfgno, buffer, tmp);
dbg("get_conf_no %d Result %d, wLength %d\r\n", cfgno, result, tmp);
return result;
}
/*
* set address of a device to the value in dev->devnum.
* This can only be done by addressing the device via the default address (0)
*/
int usb_set_address(struct usb_device *dev)
{
int res;
dbg("set address %d\r\n", dev->devnum);
res = usb_control_msg(dev, usb_snddefctrl(dev), USB_REQ_SET_ADDRESS, 0, (dev->devnum), 0, NULL, 0, USB_CNTL_TIMEOUT);
return res;
}
/*
* set interface number to interface
*/
int usb_set_interface(struct usb_device *dev, int interface, int alternate)
{
struct usb_interface_descriptor *if_face = NULL;
int ret, i;
for (i = 0; i < dev->config.bNumInterfaces; i++)
{
if (dev->config.if_desc[i].bInterfaceNumber == interface)
{
if_face = &dev->config.if_desc[i];
break;
}
}
if (!if_face)
{
dbg("selecting invalid interface %d", interface);
return -1;
}
/*
* We should return now for devices with only one alternate setting.
* According to 9.4.10 of the Universal Serial Bus Specification
* Revision 2.0 such devices can return with a STALL. This results in
* some USB sticks timeouting during initialization and then being
* unusable in U-Boot.
*/
if (if_face->num_altsetting == 1)
{
return 0;
}
ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, alternate, interface, NULL, 0, USB_CNTL_TIMEOUT * 5);
if (ret < 0)
{
return ret;
}
return 0;
}
/*
* set configuration number to configuration
*/
int usb_set_configuration(struct usb_device *dev, int configuration)
{
int res;
dbg("set configuration %d\r\n", configuration);
/* set setup command */
res = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
USB_REQ_SET_CONFIGURATION, 0, configuration, 0, NULL, 0, USB_CNTL_TIMEOUT);
if (res == 0)
{
dev->toggle[0] = 0;
dev->toggle[1] = 0;
return 0;
}
else
{
return -1;
}
}
/*
* set protocol to protocol
*/
int usb_set_protocol(struct usb_device *dev, int ifnum, int protocol)
{
return usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
USB_REQ_SET_PROTOCOL, USB_TYPE_CLASS | USB_RECIP_INTERFACE,
protocol, ifnum, NULL, 0, USB_CNTL_TIMEOUT);
}
/*
* set idle
*/
int usb_set_idle(struct usb_device *dev, int ifnum, int duration, int report_id)
{
return usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
USB_REQ_SET_IDLE, USB_TYPE_CLASS | USB_RECIP_INTERFACE,
(duration << 8) | report_id, ifnum, NULL, 0, USB_CNTL_TIMEOUT);
}
/*
* get report
*/
int usb_get_report(struct usb_device *dev, int ifnum, unsigned char type,
unsigned char id, void *buf, int size)
{
return usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
USB_REQ_GET_REPORT, USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
(type << 8) + id, ifnum, buf, size, USB_CNTL_TIMEOUT);
}
/*
* get class descriptor
*/
int usb_get_class_descriptor(struct usb_device *dev, int ifnum,
unsigned char type, unsigned char id, void *buf, int size)
{
return usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
USB_REQ_GET_DESCRIPTOR, USB_RECIP_INTERFACE | USB_DIR_IN,
(type << 8) + id, ifnum, buf, size, USB_CNTL_TIMEOUT);
}
/*
* get string index in buffer
*/
int usb_get_string(struct usb_device *dev, unsigned short langid, unsigned char index, void *buf, int size)
{
int i;
int result;
for (i = 0; i < 3; ++i)
{
/* some devices are flaky */
result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
(USB_DT_STRING << 8) + index, langid, buf, size, USB_CNTL_TIMEOUT);
if (result > 0)
{
break;
}
}
return result;
}
static void usb_try_string_workarounds(unsigned char *buf, int *length)
{
int newlength;
int oldlength = *length;
for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
{
char c = buf[newlength];
if ((c < ' ') || (c >= 127) || buf[newlength + 1])
break;
}
if (newlength > 2)
{
buf[0] = newlength;
*length = newlength;
}
}
static int usb_string_sub(struct usb_device *dev, unsigned int langid, unsigned int index, unsigned char *buf)
{
int rc;
/*
* Try to read the string descriptor by asking for the maximum
* possible number of bytes
*/
rc = usb_get_string(dev, langid, index, buf, 255);
/*
* If that failed try to read the descriptor length, then
* ask for just that many bytes
*/
if (rc < 2)
{
rc = usb_get_string(dev, langid, index, buf, 2);
if (rc == 2)
{
rc = usb_get_string(dev, langid, index, buf, buf[0]);
}
}
if (rc >= 2)
{
if (!buf[0] && !buf[1])
{
usb_try_string_workarounds(buf, &rc);
}
/* There might be extra junk at the end of the descriptor */
if (buf[0] < rc)
{
rc = buf[0];
}
rc = rc - (rc & 1); /* force a multiple of two */
}
if (rc < 2)
{
rc = -1;
}
return rc;
}
/*
* usb_string:
* Get string index and translate it to ascii.
* returns string length (> 0) or error (< 0)
*/
int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
{
unsigned char *tbuf;
int err;
unsigned int u, idx;
if (size <= 0 || !buf || !index)
{
return -1;
}
buf[0] = 0;
tbuf = (unsigned char *) driver_mem_alloc(USB_BUFSIZ);
if (tbuf == NULL)
{
dbg("usb_string: malloc failure\r\n");
return -1;
}
/* get langid for strings if it's not yet known */
if (!dev->have_langid)
{
err = usb_string_sub(dev, 0, 0, tbuf);
if (err < 0)
{
dbg("error getting string descriptor 0 (error=%lx)\r\n", dev->status);
driver_mem_free(tbuf);
return -1;
}
else if (tbuf[0] < 4)
{
dbg("string descriptor 0 too short\r\n");
driver_mem_free(tbuf);
return -1;
}
else
{
dev->have_langid = -1;
dev->string_langid = tbuf[2] | (tbuf[3] << 8);
/* always use the first langid listed */
dbg("USB device number %d default language ID 0x%x\r\n", dev->devnum, dev->string_langid);
}
}
err = usb_string_sub(dev, dev->string_langid, index, tbuf);
if (err < 0)
{
driver_mem_free(tbuf);
return err;
}
size--; /* leave room for trailing NULL char in output buffer */
for (idx = 0, u = 2; u < err; u += 2)
{
if (idx >= size)
{
break;
}
if (tbuf[u + 1]) /* high byte */
{
buf[idx++] = '?'; /* non-ASCII character */
}
else
{
buf[idx++] = tbuf[u];
}
}
buf[idx] = 0;
err = idx;
driver_mem_free(tbuf);
return err;
}
/*
* USB device handling:
* the USB device are static allocated [USB_MAX_DEVICE].
*/
/*
* Something got disconnected. Get rid of it, and all of its children.
*/
void usb_disconnect(struct usb_device **pdev)
{
struct usb_device *dev = *pdev;
if (dev != NULL)
{
int i;
dbg("USB %d disconnect on device %d\r\n", dev->parent->usbnum, dev->parent->devnum);
dbg("USB %d disconnected, device number %d\r\n", dev->usbnum, dev->devnum);
if (dev->deregister != NULL)
{
dev->deregister(dev);
}
/* Free up all the children.. */
for (i = 0; i < USB_MAXCHILDREN; i++)
{
if (dev->children[i] != NULL)
{
dbg("USB %d, disconnect children %d\r\n", dev->usbnum, dev->children[i]->devnum);
usb_disconnect(&dev->children[i]);
dev->children[i] = NULL;
}
}
/* Free up the device itself, including its device number */
if (dev->devnum > 0)
{
dev_index[dev->usbnum]--;
memset(dev, 0, sizeof(struct usb_device));
dev->devnum = -1;
}
*pdev = NULL;
}
}
/*
* returns a pointer to the device with the index [index].
* if the device is not assigned (dev->devnum==-1) returns NULL
*/
struct usb_device *usb_get_dev_index(int index, int index_bus)
{
struct usb_device *dev;
if ((index_bus >= USB_MAX_BUS) || (index_bus < 0)
|| (index >= USB_MAX_DEVICE) || (index < 0))
{
return NULL;
}
dev = &usb_dev[(index_bus * USB_MAX_DEVICE) + index];
if ((controller_priv[index_bus] == NULL) || (dev->devnum == -1))
{
return NULL;
}
return dev;
}
/*
* returns a pointer of a new device structure or NULL, if
* no device struct is available
*/
struct usb_device *usb_alloc_new_device(int bus_index, void *priv)
{
int i;
int index = dev_index[bus_index];
struct usb_device *dev;
dbg("USB %d new device %d\r\n", bus_index, index);
if (index >= USB_MAX_DEVICE)
{
dbg("ERROR, too many USB Devices, max=%d\r\n", USB_MAX_DEVICE);
return NULL;
}
/* default Address is 0, real addresses start with 1 */
dev = &usb_dev[(bus_index * USB_MAX_DEVICE) + index];
dev->devnum = index + 1;
dev->maxchild = 0;
for (i = 0; i < USB_MAXCHILDREN; dev->children[i++] = NULL)
;
dev->parent = NULL;
dev->priv_hcd = priv;
dev->usbnum = bus_index;
dev_index[bus_index]++;
return dev;
}
// #define CONFIG_LEGACY_USB_INIT_SEQ
/*
* By the time we get here, the device has gotten a new device ID
* and is in the default state. We need to identify the thing and
* get the ball rolling..
*
* Returns 0 for success, != 0 for error.
*/
int usb_new_device(struct usb_device *dev)
{
int addr;
int err;
int tmp;
unsigned char *tmpbuf;
dbg("\r\n");
#ifndef CONFIG_LEGACY_USB_INIT_SEQ
struct usb_device_descriptor *desc;
int port = -1;
struct usb_device *parent = dev->parent;
unsigned short portstatus;
#endif
if (dev == NULL)
{
dbg("called with NULL device\r\n");
return 1;
}
/* We still haven't set the Address yet */
addr = dev->devnum;
dev->devnum = 0;
tmpbuf = (unsigned char *) driver_mem_alloc(USB_BUFSIZ);
if (tmpbuf == NULL)
{
dbg("malloc failure\r\n");
return 1;
}
#ifdef CONFIG_LEGACY_USB_INIT_SEQ
/*
* this is the old and known way of initializing devices, it is
* different than what Windows and Linux are doing. Windows and Linux
* both retrieve 64 bytes while reading the device descriptor
* Several USB stick devices report ERR: CTL_TIMEOUT, caused by an
* invalid header while reading 8 bytes as device descriptor.
*/
dev->descriptor.bMaxPacketSize0 = 8; /* Start off at 8 bytes */
dev->maxpacketsize = PACKET_SIZE_8;
dev->epmaxpacketin[0] = 8;
dev->epmaxpacketout[0] = 8;
err = usb_get_descriptor(dev, USB_DT_DEVICE, 0, &dev->descriptor, 8);
if (err < 8)
{
dbg("\r\nUSB device not responding, giving up (status=%lX)\r\n", dev->status);
driver_mem_free(tmpbuf);
return 1;
}
#else
/*
* This is a Windows scheme of initialization sequence, with double
* reset of the device (Linux uses the same sequence)
* Some equipment is said to work only with such init sequence; this
* patch is based on the work by Alan Stern:
* http://sourceforge.net/mailarchive/forum.php?
* thread_id=5729457&forum_id=5398
*/
/*
* send 64-byte GET-DEVICE-DESCRIPTOR request. Since the descriptor is
* only 18 bytes long, this will terminate with a short packet. But if
* the maxpacket size is 8 or 16 the device may be waiting to transmit
* some more, or keeps on retransmitting the 8 byte header.
*/
desc = (struct usb_device_descriptor *) tmpbuf;
dev->descriptor.bMaxPacketSize0 = 64; /* Start off at 64 bytes */
/* Default to 64 byte max packet size */
dev->maxpacketsize = PACKET_SIZE_64;
dev->epmaxpacketin[0] = 64;
dev->epmaxpacketout[0] = 64;
err = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, 64);
if (err < 0)
{
dbg("usb_new_device: usb_get_descriptor() failed\r\n");
driver_mem_free(tmpbuf);
return 1;
}
dev->descriptor.bMaxPacketSize0 = desc->bMaxPacketSize0;
/* find the port number we're at */
if (parent)
{
int j;
for (j = 0; j < parent->maxchild; j++)
{
if (parent->children[j] == dev)
{
port = j;
break;
}
}
dbg("port = %d\r\n", port);
if (port < 0)
{
dbg("usb_new_device: cannot locate device's port.\r\n");
driver_mem_free(tmpbuf);
return 1;
}
/* reset the port for the second time */
err = hub_port_reset(dev->parent, port, &portstatus);
if (err < 0)
{
dbg("\r\nCouldn't reset port %d\r\n", port);
driver_mem_free(tmpbuf);
return 1;
}
}
#endif
dev->epmaxpacketin[0] = dev->descriptor.bMaxPacketSize0;
dev->epmaxpacketout[0] = dev->descriptor.bMaxPacketSize0;
switch (dev->descriptor.bMaxPacketSize0)
{
case 8: dev->maxpacketsize = PACKET_SIZE_8; break;
case 16: dev->maxpacketsize = PACKET_SIZE_16; break;
case 32: dev->maxpacketsize = PACKET_SIZE_32; break;
case 64: dev->maxpacketsize = PACKET_SIZE_64; break;
}
dev->devnum = addr;
err = usb_set_address(dev); /* set address */
if (err < 0)
{
dbg("\r\nUSB device not accepting new address (error=%lX)\r\n", dev->status);
driver_mem_free(tmpbuf);
return 1;
}
wait(10); /* Let the SET_ADDRESS settle */
tmp = sizeof(dev->descriptor);
err = usb_get_descriptor(dev, USB_DT_DEVICE, 0, &dev->descriptor, sizeof(dev->descriptor));
if (err < tmp)
{
if (err < 0)
{
dbg("unable to get device descriptor (error=%d)\r\n", err);
}
else
{
dbg("USB device descriptor short read (expected %i, got %i)\r\n", tmp, err);
}
driver_mem_free(tmpbuf);
return 1;
}
/* correct values */
dev->descriptor.bcdUSB = swpw(dev->descriptor.bcdUSB);
dev->descriptor.idVendor = swpw(dev->descriptor.idVendor);
dev->descriptor.idProduct = swpw(dev->descriptor.idProduct);
dev->descriptor.bcdDevice = swpw(dev->descriptor.bcdDevice);
/* only support for one config for now */
usb_get_configuration_no(dev, &tmpbuf[0], 0);
usb_parse_config(dev, &tmpbuf[0], 0);
usb_set_maxpacket(dev);
/* we set the default configuration here */
if (usb_set_configuration(dev, dev->config.bConfigurationValue))
{
dbg("failed to set default configuration len %d, status %lX\r\n", dev->act_len, dev->status);
driver_mem_free(tmpbuf);
return -1;
}
dbg("new device strings: Mfr=%d, Product=%d, SerialNumber=%d\r\n",
dev->descriptor.iManufacturer, dev->descriptor.iProduct,
dev->descriptor.iSerialNumber);
memset(dev->mf, 0, sizeof(dev->mf));
memset(dev->prod, 0, sizeof(dev->prod));
memset(dev->serial, 0, sizeof(dev->serial));
if (dev->descriptor.iManufacturer)
{
usb_string(dev, dev->descriptor.iManufacturer, dev->mf, sizeof(dev->mf));
}
if (dev->descriptor.iProduct)
{
usb_string(dev, dev->descriptor.iProduct, dev->prod, sizeof(dev->prod));
}
if (dev->descriptor.iSerialNumber)
{
usb_string(dev, dev->descriptor.iSerialNumber, dev->serial, sizeof(dev->serial));
}
dbg("Manufacturer %s\r\n", dev->mf);
dbg("Product %s\r\n", dev->prod);
dbg("SerialNumber %s\r\n", dev->serial);
/* now probe if the device is a hub */
usb_hub_probe(dev, 0);
driver_mem_free(tmpbuf);
return 0;
}
/*
* build device Tree
*/
void usb_scan_devices(void *priv)
{
int i;
struct usb_device *dev;
/* first make all devices unknown */
for (i = 0; i < USB_MAX_DEVICE; i++)
{
memset(&usb_dev[(bus_index * USB_MAX_DEVICE) + i], 0, sizeof(struct usb_device));
usb_dev[(bus_index * USB_MAX_DEVICE) + i].devnum = -1;
}
dev_index[bus_index] = 0;
/*
* device 0 is always present (root hub, so let it analyze)
*/
dev = usb_alloc_new_device(bus_index, priv);
if (usb_new_device(dev))
{
xprintf("No USB Device found\r\n");
if (dev != NULL)
{
dev_index[bus_index]--;
}
}
else
{
xprintf("%d USB Device(s) found\r\n", dev_index[bus_index]);
}
/* insert "driver" if possible */
if (drv_usb_kbd_init() < 0)
{
xprintf("No USB keyboard found\r\n");
}
else
{
xprintf("USB HID keyboard driver installed\r\n");
}
if (drv_usb_mouse_init() < 0)
{
xprintf("No USB mouse found\r\n");
}
else
{
xprintf("USB HID mouse driver installed\r\n");
}
xprintf("Scan end\r\n");
}