Files
FireBee_SVN/BaS_gcc/video/fbmon.c
2016-11-02 06:26:04 +00:00

1260 lines
36 KiB
C

/*
* fbmon.c
*
* Copyright (C) 2002 James Simmons <jsimmons@users.sf.net>
*
* Credits:
*
* The EDID Parser is a conglomeration from the following sources:
*
* 1. SciTech SNAP Graphics Architecture
* Copyright (C) 1991-2002 SciTech Software, Inc. All rights reserved.
*
* 2. XFree86 4.3.0, interpret_edid.c
* Copyright 1998 by Egbert Eich <Egbert.Eich@Physik.TU-Darmstadt.DE>
*
* 3. John Fremlin <vii@users.sourceforge.net> and
* Ani Joshi <ajoshi@unixbox.com>
*
* Generalized Timing Formula is derived from:
*
* GTF Spreadsheet by Andy Morrish (1/5/97)
* available at http://www.vesa.org
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive
* for more details.
*
*/
#include "bas_string.h"
#include "fb.h"
#include "edid.h"
#define DEBUG
#include "debug.h"
/*
* EDID parser
*/
#define FBMON_FIX_HEADER 1
#define FBMON_FIX_INPUT 2
struct broken_edid {
unsigned char manufacturer[4];
unsigned long model;
unsigned long fix;
};
static struct broken_edid brokendb[] = {
/* DEC FR-PCXAV-YZ */
{
.manufacturer = "DEC",
.model = 0x073a,
.fix = FBMON_FIX_HEADER,
},
/* ViewSonic PF775a */
{
.manufacturer = "VSC",
.model = 0x5a44,
.fix = FBMON_FIX_INPUT,
},
};
static const unsigned char edid_v1_header[] = { 0x00, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0x00
};
static void copy_string(unsigned char *c, unsigned char *s)
{
int i;
c = c + 5;
for (i = 0; (i < 13 && *c != 0x0A); i++)
*(s++) = *(c++);
*s = 0;
while (i-- && (*--s == 0x20)) *s = 0;
}
static int check_edid(unsigned char *edid)
{
unsigned char *block = edid + ID_MANUFACTURER_NAME, manufacturer[4];
unsigned char *b;
unsigned long model;
int i, fix = 0, ret = 0;
manufacturer[0] = ((block[0] & 0x7c) >> 2) + '@';
manufacturer[1] = ((block[0] & 0x03) << 3) + ((block[1] & 0xe0) >> 5) + '@';
manufacturer[2] = (block[1] & 0x1f) + '@';
manufacturer[3] = 0;
model = block[2] + (block[3] << 8);
for(i = 0; i < sizeof(brokendb)/sizeof(*brokendb); i++)
{
if(manufacturer[0] == brokendb[i].manufacturer[0]
&& manufacturer[1] == brokendb[i].manufacturer[1]
&& manufacturer[2] == brokendb[i].manufacturer[2]
&& manufacturer[3] == brokendb[i].manufacturer[3]
&& brokendb[i].model == model)
{
fix = brokendb[i].fix;
break;
}
}
switch(fix)
{
case FBMON_FIX_HEADER:
for(i = 0; i < 8; i++)
{
if(edid[i] != edid_v1_header[i])
ret = fix;
}
break;
case FBMON_FIX_INPUT:
b = edid + EDID_STRUCT_DISPLAY;
/* Only if display is GTF capable will
the input type be reset to analog */
if(b[4] & 0x01 && b[0] & 0x80)
ret = fix;
break;
}
return ret;
}
static void fix_edid(unsigned char *edid, int fix)
{
unsigned char *b;
switch(fix)
{
case FBMON_FIX_HEADER:
memcpy(edid, edid_v1_header, 8);
break;
case FBMON_FIX_INPUT:
b = edid + EDID_STRUCT_DISPLAY;
b[0] &= ~0x80;
edid[127] += 0x80;
break;
}
}
static int edid_checksum(unsigned char *edid)
{
unsigned char i, csum = 0, all_null = 0;
int err = 0, fix = check_edid(edid);
if(fix)
fix_edid(edid, fix);
for(i = 0; i < EDID_LENGTH; i++)
{
csum += edid[i];
all_null |= edid[i];
}
if((csum == 0x00) && all_null)
/* checksum passed, everything's good */
err = 1;
if(!err)
dbg("edid bad checksum\r\n");
return err;
}
static int edid_check_header(unsigned char *edid)
{
int i, err = 1, fix = check_edid(edid);
if(fix)
fix_edid(edid, fix);
for(i = 0; i < 8; i++)
{
if(edid[i] != edid_v1_header[i])
err = 0;
}
if(!err)
dbg("edid bad header\r\n");
return err;
}
static void parse_vendor_block(unsigned char *block, struct fb_monspecs *specs)
{
specs->manufacturer[0] = ((block[0] & 0x7c) >> 2) + '@';
specs->manufacturer[1] = ((block[0] & 0x03) << 3) + ((block[1] & 0xe0) >> 5) + '@';
specs->manufacturer[2] = (block[1] & 0x1f) + '@';
specs->manufacturer[3] = 0;
specs->model = block[2] + (block[3] << 8);
specs->serial = block[4] + (block[5] << 8) + (block[6] << 16) + (block[7] << 24);
specs->year = block[9] + 1990;
specs->week = block[8];
dbg(" Manufacturer: %s\r\n", specs->manufacturer);
dbg(" Model: %s\r\n", specs->model);
dbg(" Serial#: %d\r\n", specs->serial);
dbg(" Year: %d\r\n", specs->year);
dbg(" Week %d\r\n", specs->week);
}
static void get_dpms_capabilities(unsigned char flags, struct fb_monspecs *specs)
{
specs->dpms = 0;
if(flags & DPMS_ACTIVE_OFF)
specs->dpms |= FB_DPMS_ACTIVE_OFF;
if(flags & DPMS_SUSPEND)
specs->dpms |= FB_DPMS_SUSPEND;
if(flags & DPMS_STANDBY)
specs->dpms |= FB_DPMS_STANDBY;
dbg(" DPMS: Active %s\r\n", (flags & DPMS_ACTIVE_OFF) ? "yes" : "no");
dbg(" Suspend: %s\r\n", (flags & DPMS_SUSPEND) ? "yes" : "no");
dbg(" Standby %s\r\n", (flags & DPMS_STANDBY) ? "yes\r\n" : "no\r\n");
}
static void get_chroma(unsigned char *block, struct fb_monspecs *specs)
{
int tmp;
/* Chromaticity data */
tmp = ((block[5] & (3 << 6)) >> 6) | (block[0x7] << 2);
tmp *= 1000;
tmp += 512;
specs->chroma.redx = tmp/1024;
dbg(" Chroma\r\n");
dbg(" RedX: %d\r\n", specs->chroma.redx / 10);
tmp = ((block[5] & (3 << 4)) >> 4) | (block[0x8] << 2);
tmp *= 1000;
tmp += 512;
specs->chroma.redy = tmp/1024;
dbg(" RedY: %d\r\n", specs->chroma.redy / 10);
tmp = ((block[5] & (3 << 2)) >> 2) | (block[0x9] << 2);
tmp *= 1000;
tmp += 512;
specs->chroma.greenx = tmp/1024;
dbg(" GreenX: %d\r\n", specs->chroma.greenx / 10);
tmp = (block[5] & 3) | (block[0xa] << 2);
tmp *= 1000;
tmp += 512;
specs->chroma.greeny = tmp / 1024;
dbg(" GreenY: %d\r\n", specs->chroma.greeny / 10);
tmp = ((block[6] & (3 << 6)) >> 6) | (block[0xb] << 2);
tmp *= 1000;
tmp += 512;
specs->chroma.bluex = tmp/1024;
dbg(" BlueX: %d\r\n", specs->chroma.bluex / 10);
tmp = ((block[6] & (3 << 4)) >> 4) | (block[0xc] << 2);
tmp *= 1000;
tmp += 512;
specs->chroma.bluey = tmp/1024;
dbg(" BlueY: %d\r\n", specs->chroma.bluey / 10);
tmp = ((block[6] & (3 << 2)) >> 2) | (block[0xd] << 2);
tmp *= 1000;
tmp += 512;
specs->chroma.whitex = tmp/1024;
dbg(" WhiteX: %d\r\n", specs->chroma.whitex / 10);
tmp = (block[6] & 3) | (block[0xe] << 2);
tmp *= 1000;
tmp += 512;
specs->chroma.whitey = tmp/1024;
dbg(" WhiteY: %d\r\n", specs->chroma.whitey / 10);
}
static int edid_is_serial_block(unsigned char *block)
{
if((block[0] == 0x00) && (block[1] == 0x00)
&& (block[2] == 0x00) && (block[3] == 0xff) && (block[4] == 0x00))
return 1;
else
return 0;
}
static int edid_is_ascii_block(unsigned char *block)
{
if((block[0] == 0x00) && (block[1] == 0x00)
&& (block[2] == 0x00) && (block[3] == 0xfe) && (block[4] == 0x00))
return 1;
else
return 0;
}
static int edid_is_limits_block(unsigned char *block)
{
if((block[0] == 0x00) && (block[1] == 0x00)
&& (block[2] == 0x00) && (block[3] == 0xfd) && (block[4] == 0x00))
return 1;
else
return 0;
}
static int edid_is_monitor_block(unsigned char *block)
{
if((block[0] == 0x00) && (block[1] == 0x00)
&& (block[2] == 0x00) && (block[3] == 0xfc) && (block[4] == 0x00))
return 1;
else
return 0;
}
static void calc_mode_timings(int xres, int yres, int refresh, struct fb_videomode *mode)
{
struct fb_var_screeninfo var;
struct fb_info info;
var.xres = xres;
var.yres = yres;
fb_get_mode(FB_VSYNCTIMINGS | FB_IGNOREMON, refresh, &var, &info);
mode->xres = xres;
mode->yres = yres;
mode->pixclock = var.pixclock;
mode->refresh = refresh;
mode->left_margin = var.left_margin;
mode->right_margin = var.right_margin;
mode->upper_margin = var.upper_margin;
mode->lower_margin = var.lower_margin;
mode->hsync_len = var.hsync_len;
mode->vsync_len = var.vsync_len;
mode->vmode = 0;
mode->sync = 0;
}
static int get_est_timing(unsigned char *block, struct fb_videomode *mode)
{
int num = 0;
unsigned char c;
c = block[0];
if(c&0x80)
{
calc_mode_timings(720, 400, 70, &mode[num]);
mode[num++].flag = FB_MODE_IS_CALCULATED;
dbg(" 720x400@70Hz\r\n");
}
if(c&0x40)
{
calc_mode_timings(720, 400, 88, &mode[num]);
mode[num++].flag = FB_MODE_IS_CALCULATED;
dbg(" 720x400@88Hz\r\n");
}
if(c&0x20)
{
mode[num++] = vesa_modes[3];
dbg(" 640x480@60Hz\r\n");
}
if(c&0x10)
{
calc_mode_timings(640, 480, 67, &mode[num]);
mode[num++].flag = FB_MODE_IS_CALCULATED;
dbg(" 640x480@67Hz\r\n");
}
if(c&0x08)
{
mode[num++] = vesa_modes[4];
dbg(" 640x480@72Hz\r\n");
}
if(c&0x04)
{
mode[num++] = vesa_modes[5];
dbg(" 640x480@75Hz\r\n");
}
if(c&0x02)
{
mode[num++] = vesa_modes[7];
dbg(" 800x600@56Hz\r\n");
}
if(c&0x01)
{
mode[num++] = vesa_modes[8];
dbg(" 800x600@60Hz\r\n");
}
c = block[1];
if(c&0x80)
{
mode[num++] = vesa_modes[9];
dbg(" 800x600@72Hz\r\n");
}
if(c&0x40)
{
mode[num++] = vesa_modes[10];
dbg(" 800x600@75Hz\r\n");
}
if(c&0x20)
{
calc_mode_timings(832, 624, 75, &mode[num]);
mode[num++].flag = FB_MODE_IS_CALCULATED;
dbg(" 832x624@75Hz\r\n");
}
if(c&0x10)
{
mode[num++] = vesa_modes[12];
dbg(" 1024x768@87Hz Interlaced\r\n");
}
if(c&0x08)
{
mode[num++] = vesa_modes[13];
dbg(" 1024x768@60Hz\r\n");
}
if(c&0x04)
{
mode[num++] = vesa_modes[14];
dbg(" 1024x768@70Hz\r\n");
}
if(c&0x02)
{
mode[num++] = vesa_modes[15];
dbg(" 1024x768@75Hz\r\n");
}
if(c&0x01)
{
mode[num++] = vesa_modes[21];
dbg(" 1280x1024@75Hz\r\n");
}
c = block[2];
if(c&0x80)
{
mode[num++] = vesa_modes[17];
dbg(" 1152x870@75Hz\r\n");
}
dbg(" Manufacturer's mask: 0x%02x\r\n", c & 0x7F);
return num;
}
static int get_std_timing(unsigned char *block, struct fb_videomode *mode)
{
int xres, yres = 0, refresh, ratio, i;
xres = (block[0] + 31) * 8;
if(xres <= 256)
return 0;
ratio = (block[1] & 0xc0) >> 6;
switch(ratio)
{
case 0: yres = xres; break;
case 1: yres = (xres * 3)/4; break;
case 2: yres = (xres * 4)/5; break;
case 3: yres = (xres * 9)/16; break;
}
refresh = (block[1] & 0x3f) + 60;
dbg("%dx%d@ Hz\r\n",xres, yres, refresh);
for(i = 0; i < VESA_MODEDB_SIZE; i++)
{
if(vesa_modes[i].xres == xres && vesa_modes[i].yres == yres
&& vesa_modes[i].refresh == refresh)
{
*mode = vesa_modes[i];
mode->flag |= FB_MODE_IS_STANDARD;
return 1;
}
}
calc_mode_timings(xres, yres, refresh, mode);
return 1;
}
static int get_dst_timing(unsigned char *block, struct fb_videomode *mode)
{
int j, num = 0;
for(j = 0; j < 6; j++, block+= STD_TIMING_DESCRIPTION_SIZE)
num += get_std_timing(block, &mode[num]);
return num;
}
static void get_detailed_timing(unsigned char *block, struct fb_videomode *mode)
{
mode->xres = H_ACTIVE;
mode->yres = V_ACTIVE;
mode->pixclock = PIXEL_CLOCK;
mode->pixclock /= 1000;
mode->pixclock = KHZ2PICOS(mode->pixclock);
mode->right_margin = H_SYNC_OFFSET;
mode->left_margin = (H_ACTIVE + H_BLANKING) - (H_ACTIVE + H_SYNC_OFFSET + H_SYNC_WIDTH);
mode->upper_margin = V_BLANKING - V_SYNC_OFFSET - V_SYNC_WIDTH;
mode->lower_margin = V_SYNC_OFFSET;
mode->hsync_len = H_SYNC_WIDTH;
mode->vsync_len = V_SYNC_WIDTH;
if(HSYNC_POSITIVE)
mode->sync |= FB_SYNC_HOR_HIGH_ACT;
if(VSYNC_POSITIVE)
mode->sync |= FB_SYNC_VERT_HIGH_ACT;
mode->refresh = PIXEL_CLOCK/((H_ACTIVE + H_BLANKING) * (V_ACTIVE + V_BLANKING));
mode->vmode = 0;
mode->flag = FB_MODE_IS_DETAILED;
dbg("%d MHz 0x%04x 0x%04x 0x%04x 0x%04x 0x%04x 0x%04x 0x%04x\r\n",
PIXEL_CLOCK / 1000000,
H_ACTIVE,
H_ACTIVE + H_SYNC_OFFSET,
H_ACTIVE + H_SYNC_OFFSET + H_SYNC_WIDTH,
H_ACTIVE + H_BLANKING,
V_ACTIVE,
V_ACTIVE + V_SYNC_OFFSET,
V_ACTIVE + V_SYNC_OFFSET + V_SYNC_WIDTH,
V_ACTIVE + V_BLANKING);
dbg("Hsync %s Vsync %s\r\n",
(HSYNC_POSITIVE) ? " +" : " -",
(VSYNC_POSITIVE) ? "+" : "-");
}
#define MAX_DB_ALLOC 100
static struct fb_videomode tab_db[MAX_DB_ALLOC];
static struct fb_videomode *db_used[MAX_DB_ALLOC];
static struct fb_videomode *alloc_db(int num)
{
int i = 0;
if(!num)
return(NULL);
while(i < MAX_DB_ALLOC)
{
if((db_used[i] == NULL) && ((i + num) <= MAX_DB_ALLOC))
{
int j; /* search contiguous num db free */
for(j = 0; j < num; j++)
{
if(db_used[i+j] != NULL)
break; /* already used */
}
if(j >= num)
{
struct fb_videomode *p = &tab_db[i];
for(j = 0; j < num; db_used[i+j] = p, j++);
return(p);
}
}
i++;
}
return(NULL);
}
static void free_db(struct fb_videomode *db)
{
int i;
for(i = 0; i < MAX_DB_ALLOC; i++)
{
if(db_used[i] == db)
db_used[i] = NULL;
}
}
/**
* fb_destroy_modedb - destroys mode database
* @modedb: mode database to destroy
*
* DESCRIPTION:
* Destroy mode database created by fb_create_modedb
*/
void fb_destroy_modedb(struct fb_videomode *modedb)
{
// Funcs_free(modedb);
free_db(modedb);
}
/**
* fb_create_modedb - create video mode database
* @edid: EDID data
* @dbsize: database size
*
* RETURNS: struct fb_videomode, @dbsize contains length of database
*
* DESCRIPTION:
* This function builds a mode database using the contents of the EDID
* data
*/
static struct fb_videomode *fb_create_modedb(unsigned char *edid, int *dbsize)
{
struct fb_videomode *mode, *m;
unsigned char *block;
int num = 0, i;
// mode = Funcs_malloc(50 * sizeof(struct fb_videomode), 3);
mode = alloc_db(50);
if(mode == NULL)
return NULL;
memset((char *)mode, 0, 50 * sizeof(struct fb_videomode));
if(edid == NULL || !edid_checksum(edid) || !edid_check_header(edid))
{
fb_destroy_modedb(mode);
return NULL;
}
*dbsize = 0;
dbg(" Supported VESA Modes\r\n");
block = edid + ESTABLISHED_TIMING_1;
num += get_est_timing(block, &mode[num]);
dbg(" Standard Timings\r\n");
block = edid + STD_TIMING_DESCRIPTIONS_START;
for(i = 0; i < STD_TIMING; i++, block += STD_TIMING_DESCRIPTION_SIZE)
num += get_std_timing(block, &mode[num]);
dbg(" Detailed Timings\r\n");
block = edid + DETAILED_TIMING_DESCRIPTIONS_START;
for(i = 0; i < 4; i++, block+= DETAILED_TIMING_DESCRIPTION_SIZE)
{
int first = 1;
if(block[0] == 0x00 && block[1] == 0x00)
{
if(block[3] == 0xfa)
num += get_dst_timing(block + 5, &mode[num]);
}
else
{
get_detailed_timing(block, &mode[num]);
if(first)
{
mode[num].flag |= FB_MODE_IS_FIRST;
first = 0;
}
num++;
}
}
/* Yikes, EDID data is totally useless */
if(!num)
{
fb_destroy_modedb(mode);
return NULL;
}
*dbsize = num;
// m = Funcs_malloc(num * sizeof(struct fb_videomode), 3);
m = alloc_db(num);
if(!m)
return mode;
memcpy(m, mode, num * sizeof(struct fb_videomode));
fb_destroy_modedb(mode);
return m;
}
static int fb_get_monitor_limits(unsigned char *edid, struct fb_monspecs *specs)
{
int i, retval = 1;
unsigned char *block;
block = edid + DETAILED_TIMING_DESCRIPTIONS_START;
dbg(" Monitor Operating Limits: ");
for(i = 0; i < 4; i++, block += DETAILED_TIMING_DESCRIPTION_SIZE)
{
if (edid_is_limits_block(block))
{
specs->hfmin = H_MIN_RATE * 1000;
specs->hfmax = H_MAX_RATE * 1000;
specs->vfmin = V_MIN_RATE;
specs->vfmax = V_MAX_RATE;
specs->dclkmax = MAX_PIXEL_CLOCK * 1000000;
specs->gtf = (GTF_SUPPORT) ? 1 : 0;
retval = 0;
dbg("From EDID\r\n");
break;
}
}
/* estimate monitor limits based on modes supported */
if(retval)
{
struct fb_videomode *modes;
int num_modes, i, hz, hscan, pixclock;
modes = fb_create_modedb(edid, &num_modes);
if(!modes)
{
dbg("None Available\r\n");
return 1;
}
retval = 0;
for(i = 0; i < num_modes; i++)
{
hz = modes[i].refresh;
pixclock = PICOS2KHZ(modes[i].pixclock) * 1000;
hscan = (modes[i].yres * 105 * hz + 5000)/100;
if(specs->dclkmax == 0 || specs->dclkmax < pixclock)
specs->dclkmax = pixclock;
if(specs->dclkmin == 0 || specs->dclkmin > pixclock)
specs->dclkmin = pixclock;
if(specs->hfmax == 0 || specs->hfmax < hscan)
specs->hfmax = hscan;
if(specs->hfmin == 0 || specs->hfmin > hscan)
specs->hfmin = hscan;
if(specs->vfmax == 0 || specs->vfmax < hz)
specs->vfmax = hz;
if(specs->vfmin == 0 || specs->vfmin > hz)
specs->vfmin = hz;
}
dbg("Extrapolated\r\n");
fb_destroy_modedb(modes);
}
dbg(" H: %d - %d kHz V: %d - %d kHz, DCLK: %d MHz\r\n",
specs->hfmin / 1000,
specs->hfmax / 1000,
specs->vfmin,
specs->vfmax,
specs->dclkmax / 1000000);
return retval;
}
static void get_monspecs(unsigned char *edid, struct fb_monspecs *specs)
{
unsigned char c, *block;
block = edid + EDID_STRUCT_DISPLAY;
fb_get_monitor_limits(edid, specs);
c = block[0] & 0x80;
specs->input = 0;
if(c)
{
specs->input |= FB_DISP_DDI;
dbg(" Digital Display Input");
}
else
{
switch ((block[0] & 0x60) >> 5)
{
case 0:
//dbg(" Analog Display Input: Input Voltage - 0.700V/0.300V");
specs->input |= FB_DISP_ANA_700_300;
break;
case 1:
//dbg("0.714V/0.286V");
specs->input |= FB_DISP_ANA_714_286;
break;
case 2:
//dbg("1.000V/0.400V");
specs->input |= FB_DISP_ANA_1000_400;
break;
case 3:
//dbg("0.700V/0.000V");
specs->input |= FB_DISP_ANA_700_000;
break;
}
}
// dbg("Sync: ");
c = block[0] & 0x10;
if(c)
{
dbg(" Configurable signal level\r\n");
}
c = block[0] & 0x0f;
specs->signal = 0;
if(c & 0x10)
{
//DPRINT("Blank to Blank ");
specs->signal |= FB_SIGNAL_BLANK_BLANK;
}
if(c & 0x08)
{
//DPRINT("Separate ");
specs->signal |= FB_SIGNAL_SEPARATE;
}
if(c & 0x04)
{
//DPRINT("Composite ");
specs->signal |= FB_SIGNAL_COMPOSITE;
}
if(c & 0x02)
{
//DPRINT("Sync on Green ");
specs->signal |= FB_SIGNAL_SYNC_ON_GREEN;
}
if(c & 0x01)
{
// DPRINT("Serration on ");
specs->signal |= FB_SIGNAL_SERRATION_ON;
}
specs->max_x = block[1];
specs->max_y = block[2];
c = block[3];
specs->gamma = c+100;
dbg(" Gamma %d\r\n: ",specs->gamma / 100);
get_dpms_capabilities(block[4], specs);
switch ((block[4] & 0x18) >> 3)
{
case 0:
//DPRINT(" Monochrome/Grayscale\r\n");
specs->input |= FB_DISP_MONO;
break;
case 1:
//DPRINT(" RGB Color Display\r\n");
specs->input |= FB_DISP_RGB;
break;
case 2:
//DPRINT(" Non-RGB Multicolor Display\r\n");
specs->input |= FB_DISP_MULTI;
break;
default:
//DPRINT(" Unknown\r\n");
specs->input |= FB_DISP_UNKNOWN;
break;
}
get_chroma(block, specs);
specs->misc = 0;
c = block[4] & 0x7;
if(c & 0x04)
{
dbg(" Default color format is primary\r\n");
specs->misc |= FB_MISC_PRIM_COLOR;
}
if(c & 0x02)
{
dbg(" First DETAILED Timing is preferred\r\n");
specs->misc |= FB_MISC_1ST_DETAIL;
}
if(c & 0x01)
{
dbg(" Display is GTF capable\r\n");
specs->gtf = 1;
}
}
static int edid_is_timing_block(unsigned char *block)
{
if((block[0] != 0x00) || (block[1] != 0x00)
|| (block[2] != 0x00) || (block[4] != 0x00))
return 1;
else
return 0;
}
int fb_parse_edid(unsigned char *edid, struct fb_var_screeninfo *var)
{
int i;
unsigned char *block;
if(edid == NULL || var == NULL)
return 1;
if(!(edid_checksum(edid)))
return 1;
if(!(edid_check_header(edid)))
return 1;
block = edid + DETAILED_TIMING_DESCRIPTIONS_START;
for(i = 0; i < 4; i++, block += DETAILED_TIMING_DESCRIPTION_SIZE)
{
if(edid_is_timing_block(block))
{
var->xres = var->xres_virtual = H_ACTIVE;
var->yres = var->yres_virtual = V_ACTIVE;
var->height = var->width = -1;
var->right_margin = H_SYNC_OFFSET;
var->left_margin = (H_ACTIVE + H_BLANKING) - (H_ACTIVE + H_SYNC_OFFSET + H_SYNC_WIDTH);
var->upper_margin = V_BLANKING - V_SYNC_OFFSET - V_SYNC_WIDTH;
var->lower_margin = V_SYNC_OFFSET;
var->hsync_len = H_SYNC_WIDTH;
var->vsync_len = V_SYNC_WIDTH;
var->pixclock = PIXEL_CLOCK;
var->pixclock /= 1000;
var->pixclock = KHZ2PICOS(var->pixclock);
if(HSYNC_POSITIVE)
var->sync |= FB_SYNC_HOR_HIGH_ACT;
if(VSYNC_POSITIVE)
var->sync |= FB_SYNC_VERT_HIGH_ACT;
return 0;
}
}
dbg("edid no timing block\r\n");
return 1;
}
void fb_edid_to_monspecs(unsigned char *edid, struct fb_monspecs *specs)
{
unsigned char *block;
int i;
if(edid == NULL)
return;
if(!(edid_checksum(edid)))
return;
if(!(edid_check_header(edid)))
return;
if(specs->modedb != NULL)
fb_destroy_modedb(specs->modedb);
memset((char *)specs, 0, sizeof(struct fb_monspecs));
specs->version = edid[EDID_STRUCT_VERSION];
specs->revision = edid[EDID_STRUCT_REVISION];
dbg("========================================\r\n");
dbg("Display Information (EDID)\r\n");
dbg("========================================\r\n");
dbg(" EDID Version %d.%d\r\n", specs->version, specs->revision);
parse_vendor_block(edid + ID_MANUFACTURER_NAME, specs);
block = edid + DETAILED_TIMING_DESCRIPTIONS_START;
for(i = 0; i < 4; i++, block += DETAILED_TIMING_DESCRIPTION_SIZE)
{
if(edid_is_serial_block(block))
{
copy_string(block, specs->serial_no);
//DPRINT(" Serial Number: ");
//DPRINT((void *)specs->serial_no);
//DPRINT("\r\n");
}
else if(edid_is_ascii_block(block))
{
copy_string(block, specs->ascii);
//DPRINT(" ASCII Block: ");
//DPRINT((void *)specs->ascii);
//DPRINT("\r\n");
}
else if(edid_is_monitor_block(block))
{
copy_string(block, specs->monitor);
//DPRINT(" Monitor Name: ");
//DPRINT((void *)specs->monitor);
//DPRINT("\r\n");
}
}
//DPRINT(" Display Characteristics:\r\n");
get_monspecs(edid, specs);
specs->modedb = fb_create_modedb(edid, (int *)&specs->modedb_len);
dbg("========================================\r\n");
}
/*
* VESA Generalized Timing Formula (GTF)
*/
#define FLYBACK 550
#define V_FRONTPORCH 1
#define H_OFFSET 40
#define H_SCALEFACTOR 20
#define H_BLANKSCALE 128
#define H_GRADIENT 600
#define C_VAL 30
#define M_VAL 300
struct __fb_timings {
unsigned long dclk;
unsigned long hfreq;
unsigned long vfreq;
unsigned long hactive;
unsigned long vactive;
unsigned long hblank;
unsigned long vblank;
unsigned long htotal;
unsigned long vtotal;
};
/**
* fb_get_vblank - get vertical blank time
* @hfreq: horizontal freq
*
* DESCRIPTION:
* vblank = right_margin + vsync_len + left_margin
*
* given: right_margin = 1 (V_FRONTPORCH)
* vsync_len = 3
* flyback = 550
*
* flyback * hfreq
* left_margin = --------------- - vsync_len
* 1000000
*/
static unsigned long fb_get_vblank(unsigned long hfreq)
{
unsigned long vblank;
vblank = (hfreq * FLYBACK)/1000;
vblank = (vblank + 500)/1000;
return (vblank + V_FRONTPORCH);
}
/**
* fb_get_hblank_by_freq - get horizontal blank time given hfreq
* @hfreq: horizontal freq
* @xres: horizontal resolution in pixels
*
* DESCRIPTION:
*
* xres * duty_cycle
* hblank = ------------------
* 100 - duty_cycle
*
* duty cycle = percent of htotal assigned to inactive display
* duty cycle = C - (M/Hfreq)
*
* where: C = ((offset - scale factor) * blank_scale)
* -------------------------------------- + scale factor
* 256
* M = blank_scale * gradient
*
*/
static unsigned long fb_get_hblank_by_hfreq(unsigned long hfreq, unsigned long xres)
{
unsigned long c_val, m_val, duty_cycle, hblank;
c_val = (((H_OFFSET - H_SCALEFACTOR) * H_BLANKSCALE)/256 + H_SCALEFACTOR) * 1000;
m_val = (H_BLANKSCALE * H_GRADIENT)/256;
m_val = (m_val * 1000000)/hfreq;
duty_cycle = c_val - m_val;
hblank = (xres * duty_cycle)/(100000 - duty_cycle);
return (hblank);
}
/* Quick integer square root using binomial theorem (from Dr. Dobbs journal) */
static int int_sqrt(int N)
{
unsigned long l2, u, v, u2, n;
if(N < 2)
return N;
u = N;
l2 = 0;
/* 1/2 * log_2 N = highest bit in the result */
while ((u >>= 2))
l2++;
u = 1L << l2;
v = u;
u2 = u << l2;
while (l2--)
{
v >>= 1;
n = (u + u + v) << l2;
n += u2;
if (n <= N)
{
u += v;
u2 = n;
}
}
return u;
}
/**
* fb_get_hblank_by_dclk - get horizontal blank time given pixelclock
* @dclk: pixelclock in Hz
* @xres: horizontal resolution in pixels
*
* DESCRIPTION:
*
* xres * duty_cycle
* hblank = ------------------
* 100 - duty_cycle
*
* duty cycle = percent of htotal assigned to inactive display
* duty cycle = C - (M * h_period)
*
* where: h_period = SQRT(100 - C + (0.4 * xres * M)/dclk) + C - 100
* -----------------------------------------------
* 2 * M
* M = 300;
* C = 30;
*/
static unsigned long fb_get_hblank_by_dclk(unsigned long dclk, unsigned long xres)
{
unsigned long duty_cycle, h_period, hblank;
dclk /= 1000;
h_period = 100 - C_VAL;
h_period *= h_period;
h_period += (M_VAL * xres * 2 * 1000)/(5 * dclk);
h_period *=10000;
h_period = int_sqrt(h_period);
h_period -= (100 - C_VAL) * 100;
h_period *= 1000;
h_period /= 2 * M_VAL;
duty_cycle = C_VAL * 1000 - (M_VAL * h_period)/100;
hblank = (xres * duty_cycle)/(100000 - duty_cycle) + 8;
hblank &= ~15;
return (hblank);
}
/**
* fb_get_hfreq - estimate hsync
* @vfreq: vertical refresh rate
* @yres: vertical resolution
*
* DESCRIPTION:
*
* (yres + front_port) * vfreq * 1000000
* hfreq = -------------------------------------
* (1000000 - (vfreq * FLYBACK)
*
*/
static unsigned long fb_get_hfreq(unsigned long vfreq, unsigned long yres)
{
unsigned long divisor, hfreq;
divisor = (1000000 - (vfreq * FLYBACK))/1000;
hfreq = (yres + V_FRONTPORCH) * vfreq * 1000;
return (hfreq/divisor);
}
static void fb_timings_vfreq(struct __fb_timings *timings)
{
timings->hfreq = fb_get_hfreq(timings->vfreq, timings->vactive);
timings->vblank = fb_get_vblank(timings->hfreq);
timings->vtotal = timings->vactive + timings->vblank;
timings->hblank = fb_get_hblank_by_hfreq(timings->hfreq,
timings->hactive);
timings->htotal = timings->hactive + timings->hblank;
timings->dclk = timings->htotal * timings->hfreq;
}
static void fb_timings_hfreq(struct __fb_timings *timings)
{
timings->vblank = fb_get_vblank(timings->hfreq);
timings->vtotal = timings->vactive + timings->vblank;
timings->vfreq = timings->hfreq/timings->vtotal;
timings->hblank = fb_get_hblank_by_hfreq(timings->hfreq, timings->hactive);
timings->htotal = timings->hactive + timings->hblank;
timings->dclk = timings->htotal * timings->hfreq;
}
static void fb_timings_dclk(struct __fb_timings *timings)
{
timings->hblank = fb_get_hblank_by_dclk(timings->dclk, timings->hactive);
timings->htotal = timings->hactive + timings->hblank;
timings->hfreq = timings->dclk/timings->htotal;
timings->vblank = fb_get_vblank(timings->hfreq);
timings->vtotal = timings->vactive + timings->vblank;
timings->vfreq = timings->hfreq/timings->vtotal;
}
/*
* fb_get_mode - calculates video mode using VESA GTF
* @flags: if: 0 - maximize vertical refresh rate
* 1 - vrefresh-driven calculation;
* 2 - hscan-driven calculation;
* 3 - pixelclock-driven calculation;
* @val: depending on @flags, ignored, vrefresh, hsync or pixelclock
* @var: pointer to fb_var_screeninfo
* @info: pointer to fb_info
*
* DESCRIPTION:
* Calculates video mode based on monitor specs using VESA GTF.
* The GTF is best for VESA GTF compliant monitors but is
* specifically formulated to work for older monitors as well.
*
* If @flag==0, the function will attempt to maximize the
* refresh rate. Otherwise, it will calculate timings based on
* the flag and accompanying value.
*
* If FB_IGNOREMON bit is set in @flags, monitor specs will be
* ignored and @var will be filled with the calculated timings.
*
* All calculations are based on the VESA GTF Spreadsheet
* available at VESA's public ftp (http://www.vesa.org).
*
* NOTES:
* The timings generated by the GTF will be different from VESA
* DMT. It might be a good idea to keep a table of standard
* VESA modes as well. The GTF may also not work for some displays,
* such as, and especially, analog TV.
*
* REQUIRES:
* A valid info->monspecs, otherwise 'safe numbers' will be used.
*/
int fb_get_mode(int flags, unsigned long val, struct fb_var_screeninfo *var, struct fb_info *info)
{
struct __fb_timings timings;
unsigned long interlace = 1, dscan = 1;
unsigned long hfmin, hfmax, vfmin, vfmax, dclkmin, dclkmax;
/*
* If monspecs are invalid, use values that are enough
* for 640x480@60
*/
if(!info->monspecs.hfmax || !info->monspecs.vfmax
|| !info->monspecs.dclkmax || info->monspecs.hfmax < info->monspecs.hfmin
|| info->monspecs.vfmax < info->monspecs.vfmin || info->monspecs.dclkmax < info->monspecs.dclkmin)
{
hfmin = 29000; hfmax = 30000;
vfmin = 60; vfmax = 60;
dclkmin = 0; dclkmax = 25000000;
}
else
{
hfmin = info->monspecs.hfmin;
hfmax = info->monspecs.hfmax;
vfmin = info->monspecs.vfmin;
vfmax = info->monspecs.vfmax;
dclkmin = info->monspecs.dclkmin;
dclkmax = info->monspecs.dclkmax;
}
memset((char *)&timings, 0, sizeof(struct __fb_timings));
timings.hactive = var->xres;
timings.vactive = var->yres;
if(var->vmode & FB_VMODE_INTERLACED)
{
timings.vactive /= 2;
interlace = 2;
}
if(var->vmode & FB_VMODE_DOUBLE)
{
timings.vactive *= 2;
dscan = 2;
}
switch(flags & ~FB_IGNOREMON)
{
case FB_MAXTIMINGS: /* maximize refresh rate */
timings.hfreq = hfmax;
fb_timings_hfreq(&timings);
if(timings.vfreq > vfmax)
{
timings.vfreq = vfmax;
fb_timings_vfreq(&timings);
}
if(timings.dclk > dclkmax)
{
timings.dclk = dclkmax;
fb_timings_dclk(&timings);
}
break;
case FB_VSYNCTIMINGS: /* vrefresh driven */
timings.vfreq = val;
fb_timings_vfreq(&timings);
break;
case FB_HSYNCTIMINGS: /* hsync driven */
timings.hfreq = val;
fb_timings_hfreq(&timings);
break;
case FB_DCLKTIMINGS: /* pixelclock driven */
timings.dclk = PICOS2KHZ(val) * 1000;
fb_timings_dclk(&timings);
break;
default:
return -1; // -EINVAL;
}
if(!(flags & FB_IGNOREMON)
&& (timings.vfreq < vfmin || timings.vfreq > vfmax
|| timings.hfreq < hfmin || timings.hfreq > hfmax
|| timings.dclk < dclkmin || timings.dclk > dclkmax))
return -1; //-EINVAL;
var->pixclock = KHZ2PICOS(timings.dclk/1000);
var->hsync_len = (timings.htotal * 8)/100;
var->right_margin = (timings.hblank/2) - var->hsync_len;
var->left_margin = timings.hblank - var->right_margin - var->hsync_len;
var->vsync_len = (3 * interlace)/dscan;
var->lower_margin = (1 * interlace)/dscan;
var->upper_margin = (timings.vblank * interlace)/dscan - (var->vsync_len + var->lower_margin);
return 0;
}
/*
* fb_validate_mode - validates var against monitor capabilities
* @var: pointer to fb_var_screeninfo
* @info: pointer to fb_info
*
* DESCRIPTION:
* Validates video mode against monitor capabilities specified in
* info->monspecs.
*
* REQUIRES:
* A valid info->monspecs.
*/
int fb_validate_mode(const struct fb_var_screeninfo *var, struct fb_info *info)
{
unsigned long hfreq, vfreq, htotal, vtotal, pixclock;
unsigned long hfmin, hfmax, vfmin, vfmax, dclkmin, dclkmax;
/*
* If monspecs are invalid, use values that are enough
* for 640x480@60
*/
if(!info->monspecs.hfmax || !info->monspecs.vfmax || !info->monspecs.dclkmax
|| info->monspecs.hfmax < info->monspecs.hfmin
|| info->monspecs.vfmax < info->monspecs.vfmin
|| info->monspecs.dclkmax < info->monspecs.dclkmin)
{
hfmin = 29000; hfmax = 30000;
vfmin = 60; vfmax = 60;
dclkmin = 0; dclkmax = 25000000;
}
else
{
hfmin = info->monspecs.hfmin;
hfmax = info->monspecs.hfmax;
vfmin = info->monspecs.vfmin;
vfmax = info->monspecs.vfmax;
dclkmin = info->monspecs.dclkmin;
dclkmax = info->monspecs.dclkmax;
}
if(!var->pixclock)
return -1; // -EINVAL;
pixclock = PICOS2KHZ(var->pixclock) * 1000;
htotal = var->xres + var->right_margin + var->hsync_len + var->left_margin;
vtotal = var->yres + var->lower_margin + var->vsync_len + var->upper_margin;
if(var->vmode & FB_VMODE_INTERLACED)
vtotal /= 2;
if(var->vmode & FB_VMODE_DOUBLE)
vtotal *= 2;
hfreq = pixclock/htotal;
vfreq = hfreq/vtotal;
return (vfreq < vfmin || vfreq > vfmax || hfreq < hfmin || hfreq > hfmax
|| pixclock < dclkmin || pixclock > dclkmax) ? -1 /* -EINVAL */ : 0;
}