#include "mmu.h" #include "acia.h" #include "exceptions.h" #if defined(MACHINE_FIREBEE) #include "firebee.h" #elif defined(MACHINE_M5484LITE) #include "m5484l.h" #elif defined(MACHINE_M54455) #include "m54455.h" #else #error "unknown machine!" #endif /* * mmu.c * * This file is part of BaS_gcc. * * BaS_gcc is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * BaS_gcc is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with BaS_gcc. If not, see . * * derived from original assembler sources: * Copyright 2010 - 2012 F. Aschwanden * Copyright 2013 M. Froeschle */ #define ACR_BA(x) ((x) & 0xffff0000) #define ACR_ADMSK(x) (((x) & 0xffff) << 16) #define ACR_E(x) (((x) & 1) << 15) #define ACR_S(x) (((x) & 3) << 13) #define ACR_S_USERMODE 0 #define ACR_S_SUPERVISOR_MODE 1 #define ACR_S_ALL 2 #define ACR_AMM(x) (((x) & 1) << 10) #define ACR_CM(x) (((x) & 3) << 5) #define ACR_CM_CACHEABLE_WT 0x0 #define ACR_CM_CACHEABLE_CB 0x1 #define ACR_CM_CACHE_INH_PRECISE 0x2 #define ACR_CM_CACHE_INH_IMPRECISE 0x3 #define ACR_SP(x) (((x) & 1) << 3) #define ACR_W(x) (((x) & 1) << 2) #include #include "bas_printf.h" #include "bas_types.h" #include "MCF5475.h" #include "pci.h" #include "cache.h" #include "util.h" #if defined(MACHINE_FIREBEE) #include "firebee.h" #elif defined(MACHINE_M5484LITE) #include "m5484l.h" #elif defined(MACHINE_M54455) #include "m54455.h" #else #error "unknown machine!"x #endif /* MACHINE_FIREBEE */ //#define DBG_MMU #ifdef DBG_MMU #define dbg(format, arg...) do { xprintf("DEBUG (%s()): " format, __FUNCTION__, ##arg);} while(0) #else #define dbg(format, arg...) do {;} while (0) #endif /* DBG_MMU */ #define err(format, arg...) do { xprintf("ERROR (%s()): " format, __FUNCTION__, ##arg); } while(0); /* * set ASID register * saves new value to rt_asid and returns former value */ inline uint32_t set_asid(uint32_t value) { extern long rt_asid; uint32_t ret = rt_asid; __asm__ __volatile__( "movec %[value],ASID\n\t" : /* no output */ : [value] "r" (value) : ); rt_asid = value; return ret; } /* * set ACRx register * saves new value to rt_acrx and returns former value */ inline uint32_t set_acr0(uint32_t value) { extern uint32_t rt_acr0; uint32_t ret = rt_acr0; __asm__ __volatile__( "movec %[value],ACR0\n\t" : /* not output */ : [value] "r" (value) : ); rt_acr0 = value; return ret; } /* * set ACRx register * saves new value to rt_acrx and returns former value */ inline uint32_t set_acr1(uint32_t value) { extern uint32_t rt_acr1; uint32_t ret = rt_acr1; __asm__ __volatile__( "movec %[value],ACR1\n\t" : /* not output */ : [value] "r" (value) : ); rt_acr1 = value; return ret; } /* * set ACRx register * saves new value to rt_acrx and returns former value */ inline uint32_t set_acr2(uint32_t value) { extern uint32_t rt_acr2; uint32_t ret = rt_acr2; __asm__ __volatile__( "movec %[value],ACR2\n\t" : /* not output */ : [value] "r" (value) : ); rt_acr2 = value; return ret; } /* * set ACRx register * saves new value to rt_acrx and returns former value */ inline uint32_t set_acr3(uint32_t value) { extern uint32_t rt_acr3; uint32_t ret = rt_acr3; __asm__ __volatile__( "movec %[value],ACR3\n\t" : /* not output */ : [value] "r" (value) : ); rt_acr3 = value; return ret; } inline uint32_t set_mmubar(uint32_t value) { extern uint32_t rt_mmubar; uint32_t ret = rt_mmubar; __asm__ __volatile__( "movec %[value],MMUBAR\n\t" : /* no output */ : [value] "r" (value) : /* no clobber */ ); rt_mmubar = value; NOP(); return ret; } /* * translation table for virtual address ranges. Holds the physical_offset (which must be added to a virtual * address to get its physical counterpart) for memory ranges. */ struct virt_to_phys { uint32_t start_address; uint32_t length; uint32_t physical_offset; }; #if defined(MACHINE_FIREBEE) static struct virt_to_phys translation[] = { /* virtual , length , offset */ { 0x00000000, 0x00e00000, 0x60000000 }, /* map first 14 MByte to first 14 Mb of video ram */ { 0x00e00000, 0x00100000, 0x00000000 }, /* map TOS to SDRAM */ { 0x00f00000, 0x00100000, 0xff000000 }, /* map Falcon I/O area to FPGA */ { 0x01000000, 0x1f000000, 0x00000000 }, /* map rest of ram virt = phys */ }; #elif defined(MACHINE_M5484LITE) static struct virt_to_phys translation[] = { /* virtual , length , offset */ { 0x00000000, 0x00e00000, 0x00000000 }, /* map first 14 MByte to first 14 Mb of SD ram */ { 0x00e00000, 0x00100000, 0x00000000 }, /* map TOS to SDRAM */ { 0x01000000, 0x04000000, 0x00000000 }, /* map rest of ram virt = phys */ }; #elif defined(MACHINE_M54455) /* FIXME: this is not determined yet! */ static struct virt_to_phys translation[] = { /* virtual , length , offset */ { 0x00000000, 0x00e00000, 0x60000000 }, /* map first 14 MByte to first 14 Mb of video ram */ { 0x00e00000, 0x00100000, 0x00000000 }, /* map TOS to SDRAM */ { 0x00f00000, 0x00100000, 0xff000000 }, /* map Falcon I/O area to FPGA */ { 0x01000000, 0x1f000000, 0x00000000 }, /* map rest of ram virt = phys */ }; #else #error unknown machine! #endif static int num_translations = sizeof(translation) / sizeof(struct virt_to_phys); static inline int32_t lookup_phys(int32_t virt) { int i; for (i = 0; i < num_translations; i++) { if (virt >= translation[i].start_address && virt < translation[i].start_address + translation[i].length) { return virt + translation[i].physical_offset; } } err("virtual address 0x%lx not found in translation table!\r\n", virt); return -1; } struct mmu_page_descriptor { uint8_t cache_mode : 2; uint8_t supervisor_protect : 1; uint8_t read : 1; uint8_t write : 1; uint8_t execute : 1; uint8_t global : 1; uint8_t locked : 1; }; /* * page descriptors. Size depending on DEFAULT_PAGE_SIZE, either 1M (resulting in 512 * bytes size) or 8k pages (64k descriptor array size) */ static struct mmu_page_descriptor pages[SDRAM_SIZE / DEFAULT_PAGE_SIZE]; int mmu_map_instruction_page(int32_t virt, uint8_t asid) { const uint32_t size_mask = ~ (DEFAULT_PAGE_SIZE - 1); /* pagesize */ int page_index = (virt & size_mask) / DEFAULT_PAGE_SIZE; /* index into page_descriptor array */ struct mmu_page_descriptor *page = &pages[page_index]; /* attributes of page to map */ int ipl; int32_t phys = lookup_phys(virt); /* virtual to physical translation of page */ if (phys == -1) { /* no valid mapping found, caller will issue a bus error in return */ return 0; } #ifdef DBG_MMU register int sp asm("sp"); dbg("page_descriptor: 0x%02x, ssp = 0x%08x\r\n", * (uint8_t *) page, sp); #endif /* DBG_MMU */ /* * add page to TLB */ ipl = set_ipl(7); /* do not disturb */ MCF_MMU_MMUAR = (virt & size_mask); MCF_MMU_MMUTR = (virt & size_mask) | /* virtual address */ MCF_MMU_MMUTR_ID(asid) | /* address space id (ASID) */ (page->global ? MCF_MMU_MMUTR_SG : 0) | /* shared global */ MCF_MMU_MMUTR_V; /* valid */ MCF_MMU_MMUDR = (phys & size_mask) | /* physical address */ MCF_MMU_MMUDR_SZ(DEFAULT_PAGE_SIZE) | /* page size */ MCF_MMU_MMUDR_CM(page->cache_mode) | /* cache mode */ (page->supervisor_protect ? MCF_MMU_MMUDR_SP : 0) | /* supervisor protect */ (page->read ? MCF_MMU_MMUDR_R : 0) | /* read access enable */ (page->write ? MCF_MMU_MMUDR_W : 0) | /* write access enable */ (page->execute ? MCF_MMU_MMUDR_X : 0) | /* execute access enable */ (page->locked ? MCF_MMU_MMUDR_LK : 0); MCF_MMU_MMUOR = MCF_MMU_MMUOR_ITLB | /* instruction */ MCF_MMU_MMUOR_ACC | /* access TLB */ MCF_MMU_MMUOR_UAA; /* update allocation address field */ set_ipl(ipl); dbg("mapped virt=0x%08x to phys=0x%08x\r\n", virt & size_mask, phys & size_mask); dbg("ITLB: MCF_MMU_MMUOR = %08x\r\n", MCF_MMU_MMUOR); return 1; } int mmu_map_data_page(int32_t virt, uint8_t asid) { uint16_t ipl; const uint32_t size_mask = ~ (DEFAULT_PAGE_SIZE - 1); /* pagesize */ int page_index = (virt & size_mask) / DEFAULT_PAGE_SIZE; /* index into page_descriptor array */ struct mmu_page_descriptor *page = &pages[page_index]; /* attributes of page to map */ int32_t phys = lookup_phys(virt); /* virtual to physical translation of page */ if (phys == -1) { /* no valid mapping found, caller will issue a bus error in return */ return 0; } #ifdef DBG_MMU register int sp asm("sp"); dbg("page_descriptor: 0x%02x, ssp = 0x%08x\r\n", * (uint8_t *) page, sp); #endif /* DBG_MMU */ /* * add page to TLB */ ipl = set_ipl(7); /* do not disturb */ MCF_MMU_MMUTR = (virt & size_mask) | /* virtual address */ MCF_MMU_MMUTR_ID(asid) | /* address space id (ASID) */ (page->global ? MCF_MMU_MMUTR_SG : 0) | /* shared global */ MCF_MMU_MMUTR_V; /* valid */ MCF_MMU_MMUDR = (phys & size_mask) | /* physical address */ MCF_MMU_MMUDR_SZ(DEFAULT_PAGE_SIZE) | /* page size */ MCF_MMU_MMUDR_CM(page->cache_mode) | /* cache mode */ (page->supervisor_protect ? MCF_MMU_MMUDR_SP : 0) | /* supervisor protect */ (page->read ? MCF_MMU_MMUDR_R : 0) | /* read access enable */ (page->write ? MCF_MMU_MMUDR_W : 0) | /* write access enable */ (page->execute ? MCF_MMU_MMUDR_X : 0) | /* execute access enable */ (page->locked ? MCF_MMU_MMUDR_LK : 0); MCF_MMU_MMUOR = MCF_MMU_MMUOR_ACC | /* access TLB, data */ MCF_MMU_MMUOR_UAA; /* update allocation address field */ set_ipl(ipl); dbg("mapped virt=0x%08x to phys=0x%08x\r\n", virt & size_mask, phys & size_mask); dbg("DTLB: MCF_MMU_MMUOR = %08x\r\n", MCF_MMU_MMUOR); return 1; } /* * map a page of memory using virt and phys as addresses with the Coldfire MMU. * * Theory of operation: the Coldfire MMU in the Firebee has 64 TLB entries, 32 for data (DTLB), 32 for * instructions (ITLB). Mappings can either be done locked (normal MMU TLB misses will not consider them * for replacement) or unlocked (mappings will reallocate using a LRU scheme when the MMU runs out of * TLB entries). For proper operation, the MMU needs at least two ITLBs and/or four free/allocatable DTLBs * per instruction as a minimum, more for performance. Thus locked pages (that can't be touched by the * LRU algorithm) should be used sparsingly. */ int mmu_map_page(int32_t virt, int32_t phys, enum mmu_page_size sz, uint8_t page_id, const struct mmu_page_descriptor *flags) { int size_mask; int ipl; switch (sz) { case MMU_PAGE_SIZE_1M: size_mask = ~ (SIZE_1M - 1); break; case MMU_PAGE_SIZE_8K: size_mask = ~ (SIZE_8K - 1); break; case MMU_PAGE_SIZE_4K: size_mask = ~ (SIZE_4K - 1); break; case MMU_PAGE_SIZE_1K: size_mask = ~ (SIZE_1K - 1); break; default: dbg("illegal map size %d\r\n", sz); return 0; } /* * add page to TLB */ ipl = set_ipl(7); /* do not disturb */ MCF_MMU_MMUTR = ((int) virt & size_mask) | /* virtual address */ MCF_MMU_MMUTR_ID(page_id) | /* address space id (ASID) */ (flags->global ? MCF_MMU_MMUTR_SG : 0) | /* shared global */ MCF_MMU_MMUTR_V; /* valid */ MCF_MMU_MMUDR = ((int) phys & size_mask) | /* physical address */ MCF_MMU_MMUDR_SZ(sz) | /* page size */ MCF_MMU_MMUDR_CM(flags->cache_mode) | (flags->read ? MCF_MMU_MMUDR_R : 0) | /* read access enable */ (flags->write ? MCF_MMU_MMUDR_W : 0) | /* write access enable */ (flags->execute ? MCF_MMU_MMUDR_X : 0) | /* execute access enable */ (flags->locked ? MCF_MMU_MMUDR_LK : 0); MCF_MMU_MMUOR = MCF_MMU_MMUOR_ACC | /* access TLB, data */ MCF_MMU_MMUOR_UAA; /* update allocation address field */ NOP(); MCF_MMU_MMUOR = MCF_MMU_MMUOR_ITLB | /* instruction */ MCF_MMU_MMUOR_ACC | /* access TLB */ MCF_MMU_MMUOR_UAA; /* update allocation address field */ set_ipl(ipl); dbg("mapped virt=0x%08x to phys=0x%08x\r\n", virt, phys); return 1; } void mmu_init(void) { extern uint8_t _MMUBAR[]; uint32_t MMUBAR = (uint32_t) &_MMUBAR[0]; struct mmu_page_descriptor flags; int i; /* * clear all MMU TLB entries first */ MCF_MMU_MMUOR = MCF_MMU_MMUOR_CA; /* clears _all_ TLBs (including locked ones) */ NOP(); /* * prelaminary initialization of page descriptor 0 (root) table */ for (i = 0; i < sizeof(pages) / sizeof(struct mmu_page_descriptor); i++) { uint32_t addr = i * DEFAULT_PAGE_SIZE; #if defined(MACHINE_FIREBEE) if (addr >= 0x00f00000UL && addr < 0x00ffffffUL) /* Falcon I/O area on the Firebee */ { pages[i].cache_mode = CACHE_NOCACHE_PRECISE; pages[i].execute = 0; pages[i].read = 1; pages[i].write = 1; pages[i].execute = 0; pages[i].global = 1; pages[i].supervisor_protect = 1; } else if (addr >= 0x0UL && addr < 0x00e00000UL) /* ST-RAM, potential video memory */ { pages[i].cache_mode = CACHE_WRITETHROUGH; pages[i].execute = 1; pages[i].supervisor_protect = 0; pages[i].read = 1; pages[i].write = 1; pages[i].execute = 1; pages[i].global = 1; } else if (addr >= 0x00e00000UL && addr < 0x00f00000UL) /* EmuTOS */ { pages[i].cache_mode = CACHE_COPYBACK; pages[i].execute = 1; pages[i].supervisor_protect = 1; pages[i].read = 1; pages[i].write = 0; pages[i].execute = 1; pages[i].global = 1; } else { pages[i].cache_mode = CACHE_COPYBACK; pages[i].execute = 1; pages[i].read = 1; pages[i].write = 1; pages[i].supervisor_protect = 0; pages[i].global = 1; } pages[i].locked = 0; /* not locked */ pages[0].supervisor_protect = 0; /* protect system vectors */ #elif defined(MACHINE_M5484LITE) if (addr >= 0x60000000UL && addr < 0x70000000UL) /* Compact Flash on the m5484lite */ { pages[i].cache_mode = CACHE_NOCACHE_PRECISE; pages[i].supervisor_protect = 0; pages[i].read = 1; pages[i].write = 1; pages[i].execute = 1; pages[i].global = 1; } else if (addr >= 0x0UL && addr < 0x00e00000UL) /* ST-RAM, potential video memory */ { pages[i].cache_mode = CACHE_WRITETHROUGH; pages[i].supervisor_protect = 0; pages[i].read = 1; pages[i].write = 1; pages[i].execute = 1; pages[i].global = 1; } else if (addr >= 0x00e00000UL && addr < 0x00f00000UL) /* EmuTOS */ { pages[i].cache_mode = CACHE_COPYBACK; pages[i].execute = 1; pages[i].supervisor_protect = 1; pages[i].read = 1; pages[i].write = 0; pages[i].execute = 1; pages[i].global = 1; } else { pages[i].cache_mode = CACHE_COPYBACK; /* rest of RAM */ pages[i].execute = 1; pages[i].read = 1; pages[i].write = 1; pages[i].supervisor_protect = 0; pages[i].global = 1; } pages[i].locked = 0; /* not locked */ pages[0].supervisor_protect = 0; /* protect system vectors */ #elif defined(MACHINE_M54455) if (addr >= 0x60000000UL && addr < 0x70000000UL) /* Compact Flash on the m5484lite */ { pages[i].cache_mode = CACHE_NOCACHE_PRECISE; pages[i].execute = 0; pages[i].read = 1; pages[i].write = 1; pages[i].execute = 0; pages[i].global = 1; pages[i].supervisor_protect = 1; } else if (addr >= 0x0UL && addr < 0x00e00000UL) /* ST-RAM, potential video memory */ { pages[i].cache_mode = CACHE_WRITETHROUGH; pages[i].execute = 1; pages[i].supervisor_protect = 0; pages[i].read = 1; pages[i].write = 1; pages[i].execute = 1; pages[i].global = 1; } else if (addr >= 0x00e00000UL && addr < 0x00f00000UL) /* EmuTOS */ { pages[i].cache_mode = CACHE_COPYBACK; pages[i].execute = 1; pages[i].supervisor_protect = 1; pages[i].read = 1; pages[i].write = 0; pages[i].execute = 1; pages[i].global = 1; } else { pages[i].cache_mode = CACHE_COPYBACK; /* rest of RAM */ pages[i].execute = 1; pages[i].read = 1; pages[i].write = 1; pages[i].supervisor_protect = 0; pages[i].global = 1; } pages[i].locked = 0; /* not locked */ pages[0].supervisor_protect = 0; /* protect system vectors */ #else #error Unknown machine! #endif /* MACHINE_FIREBEE */ } set_asid(0); /* do not use address extension (ASID provides virtual 48 bit addresses */ /* set data access attributes in ACR0 and ACR1 */ /* map PCI address space */ set_acr0(ACR_W(0) | /* read and write accesses permitted */ ACR_SP(1) | /* supervisor and user mode access permitted */ ACR_CM(ACR_CM_CACHE_INH_PRECISE) | /* cache inhibit, precise */ ACR_AMM(0) | /* control region > 16 MB */ ACR_S(ACR_S_SUPERVISOR_MODE) | /* match addresses in supervisor mode only */ ACR_E(1) | /* enable ACR */ #if defined(MACHINE_FIREBEE) ACR_ADMSK(0x7f) | /* cover 2GB area from 0x80000000 to 0xffffffff */ ACR_BA(0x80000000)); /* (equals area from 3 to 4 GB */ #elif defined(MACHINE_M5484LITE) ACR_ADMSK(0x7f) | /* cover 2 GB area from 0x80000000 to 0xffffffff */ ACR_BA(0x80000000)); #elif defined(MACHINE_M54455) ACR_ADMSK(0x7f) | ACR_BA(0x80000000)); /* FIXME: not determined yet */ #else #error unknown machine! #endif /* MACHINE_FIREBEE */ // set_acr1(0x601fc000); /* data access attributes for BaS in flash */ set_acr1(ACR_W(0) | ACR_SP(0) | ACR_CM(0) | #if defined(MACHINE_FIREBEE) ACR_CM(ACR_CM_CACHEABLE_WT) | #elif defined(MACHINE_M5484LITE) ACR_CM(ACR_CM_CACHEABLE_WT) | #elif defined(MACHINE_M54455) ACR_CM(ACR_CM_CACHEABLE_WT) | #else #error unknown machine! #endif /* MACHINE_FIREBEE */ ACR_AMM(0) | ACR_S(ACR_S_ALL) | ACR_E(1) | ACR_ADMSK(0x1f) | ACR_BA(0xe0000000)); /* set instruction access attributes in ACR2 and ACR3 */ //set_acr2(0xe007c400); /* instruction access attribute for BaS in flash */ set_acr2(ACR_W(0) | ACR_SP(0) | ACR_CM(0) | ACR_CM(ACR_CM_CACHEABLE_WT) | ACR_AMM(1) | ACR_S(ACR_S_ALL) | ACR_E(1) | ACR_ADMSK(0x7) | ACR_BA(0xe0000000)); /* disable ACR1 - 3, essentially disabling all of the above */ set_acr3(0x0); set_mmubar(MMUBAR + 1); /* set and enable MMUBAR */ /* create locked TLB entries */ flags.cache_mode = CACHE_COPYBACK; flags.supervisor_protect = 0; flags.read = 1; flags.write = 1; flags.execute = 1; flags.locked = true; /* 0x00000000 - 0x00100000 (first MB of physical memory) locked virt = phys */ mmu_map_page(0x0, 0x0, MMU_PAGE_SIZE_1M, 0, &flags); /* * Make the TOS (in SDRAM) read-only * This maps virtual 0x00e0'0000 - 0x00ef'ffff to the same virtual address */ flags.cache_mode = CACHE_COPYBACK; flags.supervisor_protect = 0; flags.read = 1; flags.write = 0; flags.execute = 1; flags.locked = 1; mmu_map_page(0xe00000, 0xe00000, MMU_PAGE_SIZE_1M, 0, &flags); #if defined(MACHINE_FIREBEE) /* * Map FireBee I/O area (0xfff0'0000 - 0xffff'ffff physical) to the Falcon-compatible I/O * area (0x00f0'0000 - 0x00ff'ffff virtual) for the FireBee */ flags.cache_mode = CACHE_NOCACHE_PRECISE; flags.supervisor_protect = 1; flags.read = 1; flags.write = 1; flags.execute = 0; flags.locked = 1; mmu_map_page(0x00f00000, 0xfff00000, MMU_PAGE_SIZE_1M, 0, &flags); #elif defined(MACHINE_M5484LITE) /* * Map m5484LITE CPLD access */ flags.cache_mode = CACHE_NOCACHE_PRECISE; flags.supervisor_protect = 1; flags.read = 1; flags.write = 1; flags.execute = 0; flags.locked = 1; mmu_map_page(0x6a000000, 0x6a000000, MMU_PAGE_SIZE_1M, 0, &flags); #endif /* MACHINE_FIREBEE */ /* * Map (locked) the second last MB of physical SDRAM (this is where BaS .data and .bss reside) to the same * virtual address. This is also used (completely) when BaS is in RAM */ flags.cache_mode = CACHE_COPYBACK; flags.supervisor_protect = 1; flags.read = 1; flags.write = 1; flags.execute = 1; flags.locked = 1; mmu_map_page(SDRAM_START + SDRAM_SIZE - 0x00200000, SDRAM_START + SDRAM_SIZE - 0x00200000, MMU_PAGE_SIZE_1M, 0, &flags); /* * Map (locked) the very last MB of physical SDRAM (this is where the driver buffers reside) to the same * virtual address. Used uncached for drivers. */ flags.cache_mode = CACHE_NOCACHE_PRECISE; flags.supervisor_protect = 1; flags.read = 1; flags.write = 1; flags.execute = 0; flags.locked = 1; mmu_map_page(SDRAM_START + SDRAM_SIZE - 0x00100000, SDRAM_START + SDRAM_SIZE - 0x00100000, MMU_PAGE_SIZE_1M, 0, &flags); } uint32_t mmutr_miss(uint32_t mmu_sr, uint32_t fault_address, uint32_t pc, uint32_t format_status) { uint32_t fault = format_status & 0xc030000; //dbg("MMU TLB MISS accessing 0x%08x\r\nFS = 0x%08x\r\nPC = 0x%08x\r\n", fault_address, format_status, pc); // flush_and_invalidate_caches(); switch (fault) { /* if we have a real TLB miss, map the offending page */ case 0x04010000: /* TLB miss on opword of instruction fetch */ case 0x04020000: /* TLB miss on extension word of instruction fetch */ dbg("MMU ITLB MISS accessing 0x%08x\r\n" "FS = 0x%08x\r\n" "MMUSR = 0x%08x\r\n" "PC = 0x%08x\r\n", fault_address, format_status, mmu_sr, pc); dbg("fault = 0x%08x\r\n", fault); if (!mmu_map_instruction_page(pc, 0)) { dbg("bus error\r\n"); return 1; /* bus error */ } /* due to prefetch, it makes sense to map the next adjacent page also for ITLBs */ if (pc + DEFAULT_PAGE_SIZE < TARGET_ADDRESS) { /* * only do this if the next page is still valid RAM */ if (!mmu_map_instruction_page(pc + DEFAULT_PAGE_SIZE, 0)) { dbg("bus error\r\n"); return 1; /* bus error */ } } break; case 0x08020000: /* TLB miss on data write */ case 0x0c020000: /* TLB miss on data read or read-modify-write */ dbg("MMU DTLB MISS accessing 0x%08x\r\n" "FS = 0x%08x\r\n" "MMUSR = 0x%08x\r\n" "PC = 0x%08x\r\n", fault_address, format_status, mmu_sr, pc); dbg("fault = 0x%08x\r\n", fault); if (!mmu_map_data_page(fault_address, 0)) { dbg("bus error\r\n"); return 1; /* bus error */ } break; /* else issue a bus error */ default: dbg("bus error\r\n"); return 1; /* signal bus error to caller */ } #ifdef DBG_MMU xprintf("\r\n"); #endif /* DBG_MMU */ return 0; /* signal TLB miss handled to caller */ } /* TODO: implement */ /* * API-exposed, externally callable MMU functions */ /* * lock data page(s) with address space id asid from address virt to virt + size. * * ASID probably needs an explanation - this is the "address space id" managed by * the MMU. * If its value range would be large enough, this could directly map to a PID * in MiNT. Unfortunately, the Coldfire MMU only allows an 8 bit value for ASID * (with 0 already occupied for the super user/root process and the Firebee video * subsystem occupying another one), so we are left with 253 distinct values. * MMU software needs to implement some kind of mapping and LRU scheme which will * lead to a throwaway of all mappings for processes not seen for a while (and thus * to undeterministic response/task switching times when such processes are activated * again). * * FIXME: There is no check for "too many locked pages", currently. * * return: 0 if failed (page not in translation table), 1 otherwise */ int32_t mmu_map_data_page_locked(uint32_t virt, uint32_t size, int asid) { const uint32_t size_mask = ~ (DEFAULT_PAGE_SIZE - 1); /* pagesize */ int page_index = (virt & size_mask) / DEFAULT_PAGE_SIZE; /* index into page_descriptor array */ struct mmu_page_descriptor *page = &pages[page_index]; /* attributes of page to map */ int i = 0; while (page_index * DEFAULT_PAGE_SIZE < virt + size) { if (page->locked) { dbg("page at %p is already locked. Nothing to do\r\n", virt); } else { page->locked = 1; mmu_map_data_page(virt, 0); i++; } virt += DEFAULT_PAGE_SIZE; } dbg("%d pages locked\r\n", i); return 1; /* success */ } /* * the opposite: unlock data page(s) with address space id asid from address virt to virt + size_t * * return: 0 if failed (page not found), 1 otherwise */ int32_t mmu_unlock_data_page(uint32_t address, uint32_t size, int asid) { int curr_asid; const uint32_t size_mask = ~ (DEFAULT_PAGE_SIZE - 1); int page_index = (address & size_mask) / DEFAULT_PAGE_SIZE; /* index into page descriptor array */ struct mmu_page_descriptor *page = &pages[page_index]; curr_asid = set_asid(asid); /* set asid to the one to search for */ /* TODO: check for pages[] array bounds */ while (page_index * DEFAULT_PAGE_SIZE < address + size) { MCF_MMU_MMUAR = address + page->supervisor_protect; MCF_MMU_MMUOR = MCF_MMU_MMUOR_STLB | /* search TLB */ MCF_MMU_MMUOR_ADR | MCF_MMU_MMUOR_RW; if (MCF_MMU_MMUSR & MCF_MMU_MMUSR_HIT) /* found */ { #ifdef DBG_MMU uint32_t tlb_aa = MCF_MMU_MMUOR >> 16; /* MMU internal allocation address for TLB */ #endif /* DBG_MMU */ MCF_MMU_MMUDR &= ~MCF_MMU_MMUDR_LK; /* clear lock bit */ MCF_MMU_MMUOR = MCF_MMU_MMUOR_UAA | MCF_MMU_MMUOR_ACC; /* update TLB */ dbg("DTLB %d unlocked\r\n", tlb_aa); } else { dbg("%p doesn't seem to be locked??\r\n"); } page_index++; } set_asid(curr_asid); return 1; /* success */ } int32_t mmu_report_locked_pages(uint32_t *num_itlb, uint32_t *num_dtlb) { int i; int li = 0; int ld = 0; /* Coldfire V4e allocation addresses run from 0 to 63 */ for (i = 0; i < 31; i++) /* 0-31 = ITLB AA */ { MCF_MMU_MMUAR = i; MCF_MMU_MMUOR = MCF_MMU_MMUOR_STLB | MCF_MMU_MMUOR_ITLB | MCF_MMU_MMUOR_RW; /* search ITLB */ if (MCF_MMU_MMUTR & MCF_MMU_MMUTR_V) { /* entry is valid */ if (MCF_MMU_MMUDR & MCF_MMU_MMUDR_LK) { li++; } } } for (i = 32; i < 64; i++) /* 32-63 = DTLB AA */ { MCF_MMU_MMUAR = i; MCF_MMU_MMUOR = MCF_MMU_MMUOR_STLB | MCF_MMU_MMUOR_RW; /* search ITLB */ if (MCF_MMU_MMUTR & MCF_MMU_MMUTR_V) { /* entry is valid */ if (MCF_MMU_MMUDR & MCF_MMU_MMUDR_LK) { ld++; } } } *num_itlb = li; *num_dtlb = ld; return 1; /* success */ } uint32_t mmu_report_pagesize(void) { return DEFAULT_PAGE_SIZE; }