/* * Interrupts * * Handle interrupts, the levels. * * * This file is part of BaS_gcc. * * BaS_gcc is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * BaS_gcc is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with BaS_gcc. If not, see . * * Created on: 26.02.2013 * Author: Markus Fröschle */ #include #include "MCF5475.h" #include "bas_utils.h" #include "bas_printf.h" #include "bas_string.h" #include "exceptions.h" #include "interrupts.h" #include "bas_printf.h" #include "startcf.h" #include "cache.h" #include "util.h" #include "dma.h" extern void (*rt_vbr[])(void); #define VBR rt_vbr #define IRQ_DEBUG #if defined(IRQ_DEBUG) #define dbg(format, arg...) do { xprintf("DEBUG %s(): " format, __FUNCTION__, ##arg); } while (0) #else #define dbg(format, arg...) do { ; } while (0) #endif /* * register an interrupt handler at the Coldfire interrupt controller and add the handler to * the interrupt vector table */ int register_interrupt_handler(uint8_t source, uint8_t level, uint8_t priority, uint8_t intr, void (*handler)(void)) { int ipl; int i; volatile uint8_t *ICR = &MCF_INTC_ICR01 - 1; uint8_t lp; source &= 63; priority &= 7; if (source < 1 || source > 63) { dbg("interrupt source %d not defined\r\n", source); return -1; } lp = MCF_INTC_ICR_IL(level) | MCF_INTC_ICR_IP(priority); /* check if this combination is already set somewhere */ for (i = 1; i < 64; i++) { if (ICR[i] == lp) { dbg("level %d and priority %d already used for interrupt source %d!\r\n", level, priority, i); return -1; } } /* disable interrupts */ ipl = set_ipl(7); VBR[64 + source] = handler; /* first 64 vectors are system exceptions */ /* set level and priority in interrupt controller */ ICR[source] = lp; /* set interrupt mask to where it was before */ set_ipl(ipl); return 0; } #ifndef MAX_ISR_ENTRY #define MAX_ISR_ENTRY (20) #endif struct isrentry { int vector; int (*handler)(void *, void *); void *hdev; void *harg; }; static struct isrentry isrtab[MAX_ISR_ENTRY]; /* list of interrupt service routines */ /* * clear the table of interrupt service handlers */ void isr_init(void) { memset(isrtab, 0, sizeof(isrtab)); } /* * This function places an interrupt handler in the ISR table, * thereby registering it so that the low-level handler may call it. * * The two parameters are intended for the first arg to be a * pointer to the device itself, and the second a pointer to a data * structure used by the device driver for that particular device. */ int isr_register_handler(int vector, int (*handler)(void *, void *), void *hdev, void *harg) { int index; if ((vector == 0) || (handler == NULL)) { dbg("illegal vector or handler!\r\n"); return false; } for (index = 0; index < MAX_ISR_ENTRY; index++) { if (isrtab[index].vector == vector) { /* one cross each, only! */ dbg("already set handler with this vector (%d, %d)\r\n", vector); return false; } if (isrtab[index].vector == 0) { isrtab[index].vector = vector; isrtab[index].handler = handler; isrtab[index].hdev = hdev; isrtab[index].harg = harg; return true; } } dbg("no available slots to register handler for vector %d\n\r", vector); return false; /* no available slots */ } void isr_remove_handler(int (*handler)(void *, void *)) { /* * This routine removes from the ISR table all * entries that matches 'handler'. */ int index; for (index = 0; index < MAX_ISR_ENTRY; index++) { if (isrtab[index].handler == handler) { memset(&isrtab[index], 0, sizeof(struct isrentry)); return; } } dbg("no such handler registered (handler=%p\r\n", handler); } /* * This routine searches the ISR table for an entry that matches * 'vector'. If one is found, then 'handler' is executed. */ bool isr_execute_handler(int vector) { int index; bool retval = false; /* * locate a BaS Interrupt Service Routine handler. */ for (index = 0; index < MAX_ISR_ENTRY; index++) { if (isrtab[index].vector == vector) { retval = true; if (isrtab[index].handler(isrtab[index].hdev, isrtab[index].harg)) { return retval; } } } dbg("no BaS isr handler for vector %d found\r\n", vector); return retval; } /* * PIC interrupt handler for Firebee * * Handles PIC requests that come in from PSC3 serial interface. Currently, that * is RTC/NVRAM requests only */ int pic_interrupt_handler(void *arg1, void *arg2) { uint8_t rcv_byte; rcv_byte = MCF_PSC3_PSCRB_8BIT; if (rcv_byte == 2) // PIC requests RTC data { uint8_t *rtc_reg = (uint8_t *) 0xffff8961; uint8_t *rtc_data = (uint8_t *) 0xffff8963; int index = 0; xprintf("PIC interrupt: requesting RTC data\r\n"); MCF_PSC3_PSCTB_8BIT = 0x82; // header byte to PIC do { *rtc_reg = 0; MCF_PSC3_PSCTB_8BIT = *rtc_data; } while (index++ < 64); } return 1; } extern int32_t video_sbt; extern int32_t video_tlb; void video_addr_timeout(void) { uint32_t addr = 0x0L; uint32_t *src; uint32_t *dst; uint32_t asid; dbg("video address timeout\r\n"); flush_and_invalidate_caches(); do { uint32_t tlb; uint32_t page_attr; /* * search tlb entry id for addr (if not available, the MMU * will provide a new one based on its LRU algorithm) */ MCF_MMU_MMUAR = addr; MCF_MMU_MMUOR = MCF_MMU_MMUOR_STLB | MCF_MMU_MMUOR_RW | MCF_MMU_MMUOR_ACC; NOP(); tlb = (MCF_MMU_MMUOR >> 16) & 0xffff; /* * retrieve tlb entry with the found TLB entry id */ MCF_MMU_MMUAR = tlb; MCF_MMU_MMUOR = MCF_MMU_MMUOR_STLB | MCF_MMU_MMUOR_ADR | MCF_MMU_MMUOR_RW | MCF_MMU_MMUOR_ACC; NOP(); asid = (MCF_MMU_MMUTR >> 2) & 0x1fff; /* fetch ASID of page */; if (asid != sca_page_ID) /* check if screen area */ { addr += 0x100000; continue; /* next page */ } /* modify found TLB entry */ if (addr == 0x0) { page_attr = MCF_MMU_MMUDR_LK | MCF_MMU_MMUDR_SZ(0) | MCF_MMU_MMUDR_CM(0) | MCF_MMU_MMUDR_R | MCF_MMU_MMUDR_W | MCF_MMU_MMUDR_X; } else { page_attr = MCF_MMU_MMUTR_SG | MCF_MMU_MMUTR_V; } MCF_MMU_MMUTR = addr; MCF_MMU_MMUDR = page_attr; MCF_MMU_MMUOR = MCF_MMU_MMUOR_STLB | MCF_MMU_MMUOR_ADR | MCF_MMU_MMUOR_ACC | MCF_MMU_MMUOR_UAA; NOP(); dst = (uint32_t *) 0x60000000 + addr; src = (uint32_t *) addr; while (dst < (uint32_t *) 0x60000000 + addr + 0x10000) { *dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++; } addr += 0x100000; } while (addr < 0xd00000); video_tlb = 0x2000; video_sbt = 0; } /* * blink the Firebee's LED to show we are still alive */ void blink_led(void) { static uint16_t blinker = 0; if ((blinker++ & 0x80) > 0) { MCF_GPIO_PODR_FEC1L |= (1 << 4); /* LED off */ } else { MCF_GPIO_PODR_FEC1L &= ~(1 << 4); /* LED on */ } } /* * Atari MFP interrupt registers. * * TODO: should go into a header file */ #define FALCON_MFP_IERA *((volatile uint8_t *) 0xfffffa07) #define FALCON_MFP_IERB *((volatile uint8_t *) 0xfffffa09) #define FALCON_MFP_IPRA *((volatile uint8_t *) 0xfffffa0b) #define FALCON_MFP_IPRB *((volatile uint8_t *) 0xfffffa0d) #define FALCON_MFP_IMRA *((volatile uint8_t *) 0xfffffa13) #define FALCON_MFP_IMRB *((volatile uint8_t *) 0xfffffa15) bool irq6_acsi_dma_interrupt(void) { dbg("ACSI DMA interrupt\r\n"); /* * TODO: implement handler */ return false; } bool irq6_interrupt_handler(uint32_t sf1, uint32_t sf2) { bool handled = false; MCF_EPORT_EPFR |= (1 << 6); /* clear int6 from edge port */ if (video_sbt != 0 && (video_sbt - 0x70000000) > MCF_SLT0_SCNT) { video_addr_timeout(); handled = true; } /* * check if ACSI DMA interrupt */ if (FALCON_MFP_IERA & (1 << 7)) { /* ACSI interrupt is enabled */ if (FALCON_MFP_IPRA & (1 << 7)) { irq6_acsi_dma_interrupt(); handled = true; } } if (FALCON_MFP_IPRA || FALCON_MFP_IPRB) { blink_led(); } return handled; } #if defined(MACHINE_FIREBEE) #define vbasehi (* (volatile uint8_t *) 0xffff8201) #define vbasemid (* (volatile uint8_t *) 0xffff8203) #define vbaselow (* (volatile uint8_t *) 0xffff820d) #define vwrap (* (volatile uint16_t *) 0xffff8210) #define vde (* (volatile uint16_t *) 0xffff82aa) #define vdb (* (volatile uint16_t *) 0xffff82a8) /* * this is the higlevel interrupt service routine for gpt0 timer interrupts. * * It is called from handler_gpt0 in exceptions.S * * The gpt0 timer is not used as a timer, but as interrupt trigger by the FPGA which fires * everytime the video base address high byte (0xffff8201) gets written by user code (i.e. * everytime the video base address is set). * The interrupt service routine checks if that page was already set as a video page (in that * case it does nothing), if not (if we have a newly set page), it sets up an MMU mapping for * that page (effectively rerouting any further access to Falcon video RAM to Firebee FPGA * video RAM starting at 0x60000000) and copies SDRAM contents of that page to the video * RAM page. */ void gpt0_interrupt_handler(void) { uint32_t video_address; uint32_t video_end_address; int page_number; bool already_set; extern uint32_t _STRAM_END; dbg("screen base = 0x%x\r\n", vbasehi); if (vbasehi < 2) /* screen base lower than 0x20000? */ { goto rearm_trigger; /* do nothing */ } else if (vbasehi >= 0xd0) /* higher than 0xd00000 (normal Falcon address)? */ { video_sbt = MCF_SLT0_SCNT; /* FIXME: no idea why we need to save the time here */ } video_address = (vbasehi << 16) | (vbasemid << 8) | vbaselow; page_number = video_address >> 20; /* calculate a page number */ already_set = (video_tlb & (1 << page_number)); /* already in bitset? */ video_tlb |= page_number; /* set it */ if (! already_set) /* newly set page, need to copy contents */ { flush_and_invalidate_caches(); dma_memcpy((uint8_t *) video_address + 0x60000000, (uint8_t *) video_address, 0x100000); /* * create an MMU TLB entry for the new video page */ /* * first search for an existing entry with our address. If none is found, * the MMU will propose a new one */ MCF_MMU_MMUAR = video_address; MCF_MMU_MMUOR = 0x106; NOP(); /* * take this MMU TLB entry and set it to our video address and page mapping */ MCF_MMU_MMUAR = (MCF_MMU_MMUOR >> 16) & 0xffff; /* set TLB id */ MCF_MMU_MMUTR = video_address | MCF_MMU_MMUTR_ID(sca_page_ID) | /* set video page ID */ MCF_MMU_MMUTR_SG | /* shared global */ MCF_MMU_MMUTR_V; /* valid */ MCF_MMU_MMUDR = (video_address + 0x60000000) | /* physical address */ MCF_MMU_MMUDR_SZ(0) | /* 1 MB page size */ MCF_MMU_MMUDR_CM(0) | /* writethrough */ MCF_MMU_MMUDR_R | /* readable */ MCF_MMU_MMUDR_W | /* writeable */ MCF_MMU_MMUDR_X; /* executable */ MCF_MMU_MMUOR = 0x10b; /* update TLB entry */ } /* * Calculate the effective screen memory size to see if we need to map another page * in case the new screen spans more than one single page */ video_end_address = video_address + (vde - vdb) * vwrap; if (video_end_address < _STRAM_END) { page_number = video_end_address >> 20; /* calculate a page number */ already_set = (video_tlb & (1 << page_number)); /* already in bitset? */ video_tlb |= page_number; /* set it */ if (! already_set) /* newly set page, need to copy contents */ { flush_and_invalidate_caches(); dma_memcpy((uint8_t *) video_end_address + 0x60000000, (uint8_t *) video_end_address, 0x100000); /* * create an MMU TLB entry for the new video page */ /* * first search for an existing entry with our address. If none is found, * the MMU will propose a new one */ MCF_MMU_MMUAR = video_end_address; MCF_MMU_MMUOR = 0x106; NOP(); /* * take this MMU TLB entry and set it to our video address and page mapping */ MCF_MMU_MMUAR = (MCF_MMU_MMUOR >> 16) & 0xffff; /* set TLB id */ MCF_MMU_MMUTR = video_end_address | MCF_MMU_MMUTR_ID(sca_page_ID) | /* set video page ID */ MCF_MMU_MMUTR_SG | /* shared global */ MCF_MMU_MMUTR_V; /* valid */ MCF_MMU_MMUDR = (video_end_address + 0x60000000) | /* physical address */ MCF_MMU_MMUDR_SZ(0) | /* 1 MB page size */ MCF_MMU_MMUDR_CM(0) | /* writethrough */ MCF_MMU_MMUDR_R | /* readable */ MCF_MMU_MMUDR_W | /* writeable */ MCF_MMU_MMUDR_X; /* executable */ MCF_MMU_MMUOR = 0x10b; /* update TLB entry */ } } rearm_trigger: MCF_GPT0_GMS &= ~1; /* rearm trigger */ NOP(); MCF_GPT0_GMS |= 1; } #endif /* MACHINE_FIREBEE */