#include "mmu.h" #include "acia.h" /* * mmu.c * * This file is part of BaS_gcc. * * BaS_gcc is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * BaS_gcc is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with BaS_gcc. If not, see . * * derived from original assembler sources: * Copyright 2010 - 2012 F. Aschwanden * Copyright 2013 M. Froeschle */ #define ACR_BA(x) ((x) & 0xffff0000) #define ACR_ADMSK(x) (((x) & 0xffff) << 16) #define ACR_E(x) (((x) & 1) << 15) #define ACR_S(x) (((x) & 3) << 13) #define ACR_S_USERMODE 0 #define ACR_S_SUPERVISOR_MODE 1 #define ACR_S_ALL 2 #define ACR_AMM(x) (((x) & 1) << 10) #define ACR_CM(x) (((x) & 3) << 5) #define ACR_CM_CACHEABLE_WT 0x0 #define ACR_CM_CACHEABLE_CB 0x1 #define ACR_CM_CACHE_INH_PRECISE 0x2 #define ACR_CM_CACHE_INH_IMPRECISE 0x3 #define ACR_SP(x) (((x) & 1) << 3) #define ACR_W(x) (((x) & 1) << 2) #include #include "bas_printf.h" #include "bas_types.h" #include "MCF5475.h" #include "pci.h" #include "cache.h" #include "util.h" #if defined(MACHINE_FIREBEE) #include "firebee.h" #elif defined(MACHINE_M5484LITE) #include "m5484l.h" #elif defined(MACHINE_M54455) #include "m54455.h" #else #error "unknown machine!" #endif /* MACHINE_FIREBEE */ //#define DEBUG_MMU #ifdef DEBUG_MMU #define dbg(format, arg...) do { xprintf("DEBUG (%s()): " format, __FUNCTION__, ##arg);} while(0) #else #define dbg(format, arg...) do {;} while (0) #endif /* DEBUG_MMU */ #define err(format, arg...) do { xprintf("ERROR (%s()): " format, __FUNCTION__, ##arg); xprintf("system halted\r\n"); } while(0); while(1) /* * set ASID register * saves new value to rt_asid and returns former value */ inline uint32_t set_asid(uint32_t value) { extern long rt_asid; uint32_t ret = rt_asid; __asm__ __volatile__( "movec %[value],ASID\n\t" : /* no output */ : [value] "r" (value) : ); rt_asid = value; return ret; } /* * set ACRx register * saves new value to rt_acrx and returns former value */ inline uint32_t set_acr0(uint32_t value) { extern uint32_t rt_acr0; uint32_t ret = rt_acr0; __asm__ __volatile__( "movec %[value],ACR0\n\t" : /* not output */ : [value] "r" (value) : ); rt_acr0 = value; return ret; } /* * set ACRx register * saves new value to rt_acrx and returns former value */ inline uint32_t set_acr1(uint32_t value) { extern uint32_t rt_acr1; uint32_t ret = rt_acr1; __asm__ __volatile__( "movec %[value],ACR1\n\t" : /* not output */ : [value] "r" (value) : ); rt_acr1 = value; return ret; } /* * set ACRx register * saves new value to rt_acrx and returns former value */ inline uint32_t set_acr2(uint32_t value) { extern uint32_t rt_acr2; uint32_t ret = rt_acr2; __asm__ __volatile__( "movec %[value],ACR2\n\t" : /* not output */ : [value] "r" (value) : ); rt_acr2 = value; return ret; } /* * set ACRx register * saves new value to rt_acrx and returns former value */ inline uint32_t set_acr3(uint32_t value) { extern uint32_t rt_acr3; uint32_t ret = rt_acr3; __asm__ __volatile__( "movec %[value],ACR3\n\t" : /* not output */ : [value] "r" (value) : ); rt_acr3 = value; return ret; } inline uint32_t set_mmubar(uint32_t value) { extern uint32_t rt_mmubar; uint32_t ret = rt_mmubar; __asm__ __volatile__( "movec %[value],MMUBAR\n\t" : /* no output */ : [value] "r" (value) : /* no clobber */ ); rt_mmubar = value; NOP(); return ret; } /* * translation table for virtual address ranges. Holds the physical_offset (which must be added to a virtual * address to get its physical counterpart) for memory ranges. */ struct virt_to_phys { uint32_t start_address; uint32_t length; uint32_t physical_offset; }; static struct virt_to_phys translation[] = { /* virtual , length , offset */ { 0x00000000, 0x00e00000, 0x60000000 }, /* map first 14 MByte to first 14 Mb of video ram */ //{ 0x00e00000, 0x00100000, 0x00000000 }, /* map TOS to SDRAM */ { 0x00f00000, 0x00100000, 0xff000000 }, /* map Falcon I/O area to FPGA */ { 0x01000000, 0x10000000, 0x00000000 }, /* map rest of ram virt = phys */ { 0x1fd00000, 0x01000000, 0x00000000 }, /* accessed by EmuTOS? */ }; static int num_translations = sizeof(translation) / sizeof(struct virt_to_phys); static inline uint32_t lookup_phys(uint32_t virt) { int i; for (i = 0; i < num_translations; i++) { if (virt >= translation[i].start_address && virt < translation[i].start_address + translation[i].length) { return virt + translation[i].physical_offset; } } err("virtual address 0x%lx not found in translation table!\r\n", virt); } struct page_descriptor { uint8_t cache_mode : 2; uint8_t supervisor_protect : 1; uint8_t read : 1; uint8_t write : 1; uint8_t execute : 1; uint8_t global : 1; uint8_t locked : 1; }; static struct page_descriptor pages[65536]; /* 512 Mb RAM */ /* * map a page of memory using virt addresses with the Coldfire MMU. * * Theory of operation: the Coldfire MMU in the Firebee has 64 TLB entries, 32 for data (DTLB), 32 for * instructions (ITLB). Mappings can either be done locked (normal MMU TLB misses will not consider them * for replacement) or unlocked (mappings will reallocate using a LRU scheme when the MMU runs out of * TLB entries). For proper operation, the MMU needs at least two ITLBs and/or four free/allocatable DTLBs * per instruction as a minimum, more for performance. Thus locked pages (that can't be touched by the * LRU algorithm) should be used sparsingly. * * */ int mmu_map_8k_page(uint32_t virt) { const int size_mask = 0xffffe000; /* 8k pagesize */ int page_index = (virt & size_mask) / DEFAULT_PAGE_SIZE; /* index into page_descriptor array */ struct page_descriptor *page = &pages[page_index]; /* attributes of page to map */ uint32_t phys = lookup_phys(virt); /* virtual to physical translation of page */ /* * add page to TLB */ MCF_MMU_MMUTR = (virt & size_mask) | /* virtual address */ MCF_MMU_MMUTR_ID(0x00) | /* address space id (ASID) */ MCF_MMU_MMUTR_SG | /* shared global */ MCF_MMU_MMUTR_V; /* valid */ NOP(); MCF_MMU_MMUDR = (phys & size_mask) | /* physical address */ MCF_MMU_MMUDR_SZ(MMU_PAGE_SIZE_8K) | /* page size */ MCF_MMU_MMUDR_CM(page->cache_mode) | (page->read ? MCF_MMU_MMUDR_R : 0) | /* read access enable */ (page->write ? MCF_MMU_MMUDR_W : 0) | /* write access enable */ (page->execute ? MCF_MMU_MMUDR_X : 0) | /* execute access enable */ (page->locked ? MCF_MMU_MMUDR_LK : 0); NOP(); MCF_MMU_MMUOR = MCF_MMU_MMUOR_ACC | /* access TLB, data */ MCF_MMU_MMUOR_UAA; /* update allocation address field */ NOP(); dbg("mapped virt=0x%08x to phys=0x%08x\r\n", virt & size_mask, phys & size_mask); dbg("DTLB: MCF_MMU_MMUOR = %08x\r\n", MCF_MMU_MMUOR); MCF_MMU_MMUOR = MCF_MMU_MMUOR_ITLB | /* instruction */ MCF_MMU_MMUOR_ACC | /* access TLB */ MCF_MMU_MMUOR_UAA; /* update allocation address field */ dbg("ITLB: MCF_MMU_MMUOR = %08x\r\n\r\n", MCF_MMU_MMUOR); return 1; } /* * map a page of memory using virt and phys as addresses with the Coldfire MMU. * * Theory of operation: the Coldfire MMU in the Firebee has 64 TLB entries, 32 for data (DTLB), 32 for * instructions (ITLB). Mappings can either be done locked (normal MMU TLB misses will not consider them * for replacement) or unlocked (mappings will reallocate using a LRU scheme when the MMU runs out of * TLB entries). For proper operation, the MMU needs at least two ITLBs and/or four free/allocatable DTLBs * per instruction as a minimum, more for performance. Thus locked pages (that can't be touched by the * LRU algorithm) should be used sparsingly. * * */ int mmu_map_page(uint32_t virt, uint32_t phys, enum mmu_page_size sz, uint8_t page_id, const struct page_descriptor *flags) { int size_mask; switch (sz) { case MMU_PAGE_SIZE_1M: size_mask = 0xfff00000; break; case MMU_PAGE_SIZE_8K: size_mask = 0xffffe000; break; case MMU_PAGE_SIZE_4K: size_mask = 0xfffff000; break; case MMU_PAGE_SIZE_1K: size_mask = 0xfffff800; break; default: err("illegal map size %d\r\n", sz); } /* * add page to TLB */ MCF_MMU_MMUTR = ((uint32_t) virt & size_mask) | /* virtual address */ MCF_MMU_MMUTR_ID(page_id) | /* address space id (ASID) */ (flags->global ? MCF_MMU_MMUTR_SG : 0) | /* shared global */ MCF_MMU_MMUTR_V; /* valid */ NOP(); MCF_MMU_MMUDR = ((uint32_t) phys & size_mask) | /* physical address */ MCF_MMU_MMUDR_SZ(sz) | /* page size */ MCF_MMU_MMUDR_CM(flags->cache_mode) | (flags->read ? MCF_MMU_MMUDR_R : 0) | /* read access enable */ (flags->write ? MCF_MMU_MMUDR_W : 0) | /* write access enable */ (flags->execute ? MCF_MMU_MMUDR_X : 0) | /* execute access enable */ (flags->locked ? MCF_MMU_MMUDR_LK : 0); NOP(); MCF_MMU_MMUOR = MCF_MMU_MMUOR_ACC | /* access TLB, data */ MCF_MMU_MMUOR_UAA; /* update allocation address field */ NOP(); MCF_MMU_MMUOR = MCF_MMU_MMUOR_ITLB | /* instruction */ MCF_MMU_MMUOR_ACC | /* access TLB */ MCF_MMU_MMUOR_UAA; /* update allocation address field */ dbg("mapped virt=0x%08x to phys=0x%08x\r\n", virt, phys); return 1; } void mmu_init(void) { extern uint8_t _MMUBAR[]; uint32_t MMUBAR = (uint32_t) &_MMUBAR[0]; struct page_descriptor flags; int i; /* * clear all MMU TLB entries first */ MCF_MMU_MMUOR = MCF_MMU_MMUOR_CA; NOP(); /* * prelaminary initialization of page descriptor 0 (root) table */ for (i = 0; i < sizeof(pages); i++) { uint32_t addr = i * DEFAULT_PAGE_SIZE; if (addr >= 0x00f00000 && addr < 0x00ffffff) { pages[i].cache_mode = CACHE_NOCACHE_PRECISE; pages[i].execute = 0; pages[i].supervisor_protect = 1; } else if (addr >= 0x0 && addr < 0x00f00000) /* ST-RAM, potential video memory */ { pages[i].cache_mode = CACHE_WRITETHROUGH; pages[i].execute = 1; pages[i].supervisor_protect = 0; } else { pages[i].cache_mode = CACHE_COPYBACK; pages[i].execute = 1; pages[i].supervisor_protect = 0; } pages[i].global = 1; /* all pages global by default */ pages[i].locked = 0; /* not locked */ pages[i].read = 1; /* readable, writable, executable */ pages[i].write = 1; } set_asid(0); /* do not use address extension (ASID provides virtual 48 bit addresses) yet */ /* set data access attributes in ACR0 and ACR1 */ set_acr0(ACR_W(0) | /* read and write accesses permitted */ ACR_SP(0) | /* supervisor and user mode access permitted */ ACR_CM(ACR_CM_CACHE_INH_PRECISE) | /* cache inhibit, precise (i/o area!) */ ACR_AMM(0) | /* control region > 16 MB */ ACR_S(ACR_S_ALL) | /* match addresses in user and supervisor mode */ ACR_E(1) | /* enable ACR */ #if defined(MACHINE_FIREBEE) ACR_ADMSK(0x7f) | /* cover 2GB area from 0x80000000 to 0xffffffff */ ACR_BA(0x80000000)); /* (equals area from 3 to 4 GB */ #elif defined(MACHINE_M5484LITE) ACR_ADMSK(0x7f) | /* cover 2 GB area from 0x80000000 to 0xffffffff */ ACR_BA(0x80000000)); #elif defined(MACHINE_M54455) ACR_ADMSK(0x7f) | ACR_BA(0x80000000)); /* FIXME: not determined yet */ #else #error unknown machine! #endif /* MACHINE_FIREBEE */ // set_acr1(0x601fc000); set_acr1(ACR_W(0) | ACR_SP(0) | ACR_CM(0) | #if defined(MACHINE_FIREBEE) ACR_CM(ACR_CM_CACHEABLE_WT) | /* ST RAM on the Firebee */ #elif defined(MACHINE_M5484LITE) ACR_CM(ACR_CM_CACHE_INH_PRECISE) | /* Compact Flash on the M548xLITE */ #elif defined(MACHINE_M54455) ACR_CM(ACR_CM_CACHE_INH_PRECISE) | /* FIXME: not determined yet */ #else #error unknown machine! #endif /* MACHINE_FIREBEE */ ACR_AMM(0) | ACR_S(ACR_S_ALL) | ACR_E(1) | ACR_ADMSK(0x1f) | ACR_BA(0x60000000)); /* set instruction access attributes in ACR2 and ACR3 */ //set_acr2(0xe007c400); /* flash area */ set_acr2(ACR_W(0) | ACR_SP(0) | ACR_CM(0) | ACR_CM(ACR_CM_CACHEABLE_WT) | ACR_AMM(1) | ACR_S(ACR_S_ALL) | ACR_E(1) | ACR_ADMSK(0x7) | ACR_BA(0xe0000000)); /* disable ACR3 */ set_acr3(0x0); set_mmubar(MMUBAR + 1); /* set and enable MMUBAR */ /* clear all MMU TLB entries */ MCF_MMU_MMUOR = MCF_MMU_MMUOR_CA; /* create locked TLB entries */ /* * Map (locked) the second last MB of physical SDRAM (this is where BaS .data and .bss reside) to the same * virtual address. This is also used (completely) when BaS is in RAM */ flags.cache_mode = CACHE_COPYBACK; flags.read = 1; flags.write = 1; flags.execute = 1; flags.supervisor_protect = 1; /* supervisor access only */ flags.locked = 1; mmu_map_page(SDRAM_START + SDRAM_SIZE - 0x00200000, SDRAM_START + SDRAM_SIZE - 0x00200000, 0, MMU_PAGE_SIZE_1M, &flags); /* * map EmuTOS (locked for now) */ flags.read = 1; flags.write = 1; flags.execute = 1; flags.locked = 1; mmu_map_page(0xe00000, 0xe00000, MMU_PAGE_SIZE_1M, 0, &flags); /* * Map (locked) the very last MB of physical SDRAM (this is where the driver buffers reside) to the same * virtual address. Used uncached for drivers. */ flags.cache_mode = CACHE_NOCACHE_PRECISE; flags.read = 1; flags.write = 1; flags.execute = 0; flags.supervisor_protect = 1; flags.locked = 1; mmu_map_page(SDRAM_START + SDRAM_SIZE - 0x00100000, SDRAM_START + SDRAM_SIZE - 0x00100000, 0, MMU_PAGE_SIZE_1M, &flags); } void mmutr_miss(uint32_t address, uint32_t pc, uint32_t format_status) { dbg("MMU TLB MISS accessing 0x%08x\r\nFS = 0x%08x\r\nPC = 0x%08x\r\n", address, format_status, pc); //flush_and_invalidate_caches(); #ifdef _NOT_USED_ // experimental; try to ensure that supervisor stack area stays in mmu TLBs // guess what: doesn't work... register uint32_t sp asm("sp"); dbg("stack is at %p\r\n", sp); if (sp < 0x02000000) { dbg("mapped stack at 0x%08x\r\n"); mmu_map_8k_page(sp); //flush_and_invalidate_caches(); } #endif /* _NOT_USED */ switch (address) { case keyctl: case keybd: /* do something to emulate the IKBD access */ dbg("IKBD access\r\n"); break; case midictl: case midi: /* do something to emulate MIDI access */ dbg("MIDI ACIA access\r\n"); break; default: /* add missed page to TLB */ mmu_map_8k_page(address); } }