#include #include #include #include #include #include #include /* * Firebee: MMCv3/SDv1/SDv2 (SPI mode) control module * * * Copyright (C) 2011, ChaN, all right reserved. * * This software is a free software and there is NO WARRANTY. * No restriction on use. You can use, modify and redistribute it for * personal, non-profit or commercial products UNDER YOUR RESPONSIBILITY. * Redistributions of source code must retain the above copyright notice. * */ /* Copyright (C) 2012, mfro, all rights reserved. */ #define CS_HIGH() { dspi_fifo_val &= ~MCF_DSPI_DTFR_CS5; } #define CS_LOW() { dspi_fifo_val |= MCF_DSPI_DTFR_CS5; } #define SPICLK_FAST() { MCF_DSPI_DCTAR0 = MCF_DSPI_DCTAR_TRSZ(0b111) | /* transfer size = 8 bit */ \ MCF_DSPI_DCTAR_PCSSCK(0b01) | /* 1 clock DSPICS to DSPISCK delay prescaler */ \ MCF_DSPI_DCTAR_PASC_1CLK | /* 1 clock DSPISCK to DSPICS negation prescaler */ \ MCF_DSPI_DCTAR_PDT_1CLK | /* 1 clock delay between DSPICS assertions prescaler */ \ MCF_DSPI_DCTAR_PBR_3CLK | /* 3 clock Baudrate prescaler */ \ MCF_DSPI_DCTAR_ASC(0b0000) | /* 2 */ \ MCF_DSPI_DCTAR_DT(0b0000) | /* 2 */ \ MCF_DSPI_DCTAR_BR(0b0000); } /* clock / 2 */ #define SPICLK_SLOW() { MCF_DSPI_DCTAR0 = MCF_DSPI_DCTAR_TRSZ(0b111) | /* transfer size = 8 bit */ \ MCF_DSPI_DCTAR_PCSSCK(0b01) | /* 3 clock DSPICS to DSPISCK delay prescaler */ \ MCF_DSPI_DCTAR_PASC_3CLK | /* 3 clock DSPISCK to DSPICS negation prescaler */ \ MCF_DSPI_DCTAR_PDT_3CLK | /* 3 clock delay between DSPICS assertions prescaler */ \ MCF_DSPI_DCTAR_PBR_3CLK | /* 3 clock prescaler */ \ MCF_DSPI_DCTAR_ASC(0b1001) | /* 1024 */ \ MCF_DSPI_DCTAR_DT(0b1001) | /* 1024 */ \ MCF_DSPI_DCTAR_BR(0b0111); } /*-------------------------------------------------------------------------- Module Private Functions ---------------------------------------------------------------------------*/ #include "diskio.h" /* MMC/SD command */ #define CMD0 (0) /* GO_IDLE_STATE */ #define CMD1 (1) /* SEND_OP_COND (MMC) */ #define ACMD41 (0x80+41) /* SEND_OP_COND (SDC) */ #define CMD8 (8) /* SEND_IF_COND */ #define CMD9 (9) /* SEND_CSD */ #define CMD10 (10) /* SEND_CID */ #define CMD12 (12) /* STOP_TRANSMISSION */ #define ACMD13 (0x80+13) /* SD_STATUS (SDC) */ #define CMD16 (16) /* SET_BLOCKLEN */ #define CMD17 (17) /* READ_SINGLE_BLOCK */ #define CMD18 (18) /* READ_MULTIPLE_BLOCK */ #define CMD23 (23) /* SET_BLOCK_COUNT (MMC) */ #define ACMD23 (0x80+23) /* SET_WR_BLK_ERASE_COUNT (SDC) */ #define CMD24 (24) /* WRITE_BLOCK */ #define CMD25 (25) /* WRITE_MULTIPLE_BLOCK */ #define CMD32 (32) /* ERASE_ER_BLK_START */ #define CMD33 (33) /* ERASE_ER_BLK_END */ #define CMD38 (38) /* ERASE */ #define CMD55 (55) /* APP_CMD */ #define CMD58 (58) /* READ_OCR */ static volatile DSTATUS Stat = 0 /* STA_NOINIT */; /* Physical drive status */ static uint8_t CardType; /* Card type flags */ /*-----------------------------------------------------------------------*/ /* Send/Receive data to the MMC (Platform dependent) */ /*-----------------------------------------------------------------------*/ static uint32_t dspi_fifo_val = /* CONT disable continous chip select */ /* CTAS use DCTAR0 for clock and attributes */ MCF_DSPI_DTFR_EOQ | /* current transfer is last in queue */ MCF_DSPI_DTFR_CTCNT; /* Exchange a byte */ static uint8_t xchg_spi(uint8_t byte) { uint32_t fifo = dspi_fifo_val | byte; uint8_t res; MCF_DSPI_DTFR = fifo; while (! (MCF_DSPI_DSR & MCF_DSPI_DSR_TCF)); /* wait until DSPI transfer complete */ MCF_DSPI_DSR = 0xffffffff; /* clear DSPI status register */ fifo = MCF_DSPI_DRFR; MCF_DSPI_DSR = 0xffffffff; res = fifo & 0xff; return res; } /* Receive multiple byte * * buff: pointer to data buffer * btr: number of bytes to receive (16, 64 or 512) */ static void rcvr_spi_multi(uint8_t *buff, uint32_t count) { int i; for (i = 0; i < count; i++) *buff++ = xchg_spi(0xff); } #if _USE_WRITE /* Send multiple byte * * buff: pointer to data * btx: number of bytes to send */ static void xmit_spi_multi(const uint8_t *buff, uint32_t btx) { int i; for (i = 0; i < btx; i++) xchg_spi(*buff++); } #endif static bool card_ready(void) { uint8_t d; d = xchg_spi(0xff); return (d == 0xff); } /* * Wait for card ready * * wt: timeout in ms * returns 1: ready, 0: timeout */ static int wait_ready(uint32_t wt) { return waitfor(wt, card_ready); } /* * Deselect card and release SPI */ static void deselect(void) { CS_HIGH(); xchg_spi(0xFF); /* Dummy clock (force DO hi-z for multiple slave SPI) */ } /* * Select card and wait for ready */ static int select(void) /* 1:OK, 0:Timeout */ { CS_LOW(); xchg_spi(0xFF); /* Dummy clock (force DO enabled) */ if (wait_ready(5000000)) return 1; /* OK */ deselect(); return 0; /* Timeout */ } /* * Control SPI module (Platform dependent) */ static void power_on (void) /* Enable SSP module */ { MCF_PAD_PAR_DSPI = 0x1fff; /* configure all DSPI GPIO pins for DSPI usage */ /* * FIXME: really necessary or just an oversight * that PAD_PAR_DSPI is only 16 bit? */ // MCF_PAD_PAR_TIMER = 0xff; leave off for now /* * initialize DSPI module configuration register */ MCF_DSPI_DMCR = MCF_DSPI_DMCR_MSTR | /* FireBee is DSPI master*/ MCF_DSPI_DMCR_CSIS5 | /* CS5 inactive state high */ MCF_DSPI_DMCR_CSIS3 | /* CS3 inactive state high */ MCF_DSPI_DMCR_CSIS2 | /* CS2 inactive state high */ MCF_DSPI_DMCR_DTXF | /* disable transmit FIFO */ MCF_DSPI_DMCR_DRXF | /* disable receive FIFO */ MCF_DSPI_DMCR_CTXF | /* clear transmit FIFO */ MCF_DSPI_DMCR_CRXF; /* clear receive FIFO */ /* initialize DSPI clock and transfer attributes register 0 */ MCF_DSPI_DCTAR0 = MCF_DSPI_DCTAR_TRSZ(0b111) | /* transfer size = 8 bit */ MCF_DSPI_DCTAR_PCSSCK(0b01) | /* 3 clock DSPICS to DSPISCK delay prescaler */ MCF_DSPI_DCTAR_PASC_3CLK | /* 3 clock DSPISCK to DSPICS negation prescaler */ MCF_DSPI_DCTAR_PDT_3CLK | /* 3 clock delay between DSPICS assertions prescaler */ MCF_DSPI_DCTAR_PBR_3CLK | /* 3 clock prescaler */ MCF_DSPI_DCTAR_ASC(0b1001) | /* 1024 */ MCF_DSPI_DCTAR_DT(0b1001) | /* 1024 */ MCF_DSPI_DCTAR_BR(0b0111); CS_HIGH(); /* Set CS# high */ /* card should now be initialized as MMC */ wait(10 * 1000); /* 10ms */ } static void power_off (void) /* Disable SPI function */ { select(); /* Wait for card ready */ deselect(); } /*-----------------------------------------------------------------------*/ /* Receive a data packet from the MMC */ /*-----------------------------------------------------------------------*/ static int rcvr_datablock ( /* 1:OK, 0:Error */ uint8_t *buff, /* Data buffer */ uint32_t btr /* Data block length (byte) */ ) { uint8_t token; uint32_t target = MCF_SLT_SCNT(0) - (200 * 1000L * 132); do { /* Wait for DataStart token in timeout of 200ms */ token = xchg_spi(0xFF); /* This loop will take a time. Insert rot_rdq() here for multitask envilonment. */ } while ((token == 0xFF) && MCF_SLT_SCNT(0) > target); if(token != 0xFE) return 0; /* Function fails if invalid DataStart token or timeout */ rcvr_spi_multi(buff, btr); /* Store trailing data to the buffer */ xchg_spi(0xFF); xchg_spi(0xFF); /* Discard CRC */ return 1; /* Function succeeded */ } /*-----------------------------------------------------------------------*/ /* Send a data packet to the MMC */ /*-----------------------------------------------------------------------*/ #if _USE_WRITE static int xmit_datablock ( /* 1:OK, 0:Failed */ const uint8_t *buff, /* Ponter to 512 byte data to be sent */ uint8_t token /* Token */ ) { uint8_t resp; if (!wait_ready(500)) return 0; /* Wait for card ready */ xchg_spi(token); /* Send token */ if (token != 0xFD) { /* Send data if token is other than StopTran */ xmit_spi_multi(buff, 512); /* Data */ xchg_spi(0xFF); xchg_spi(0xFF); /* Dummy CRC */ resp = xchg_spi(0xFF); /* Receive data resp */ if ((resp & 0x1F) != 0x05) /* Function fails if the data packet was not accepted */ return 0; } return 1; } #endif /*-----------------------------------------------------------------------*/ /* Send a command packet to the MMC */ /*-----------------------------------------------------------------------*/ static uint8_t send_cmd ( /* Return value: R1 resp (bit7==1:Failed to send) */ uint8_t cmd, /* Command index */ uint32_t arg /* Argument */ ) { uint8_t n, res; if (cmd & 0x80) { /* Send a CMD55 prior to ACMD */ cmd &= 0x7F; res = send_cmd(CMD55, 0); if (res > 1) return res; } /* Select card */ deselect(); if (!select()) return 0xFF; /* Send command packet */ xchg_spi(0x40 | cmd); /* Start + command index */ xchg_spi((uint8_t)(arg >> 24)); /* Argument[31..24] */ xchg_spi((uint8_t)(arg >> 16)); /* Argument[23..16] */ xchg_spi((uint8_t)(arg >> 8)); /* Argument[15..8] */ xchg_spi((uint8_t)arg); /* Argument[7..0] */ n = 0x01; /* Dummy CRC + Stop */ if (cmd == CMD0) n = 0x95; /* Valid CRC for CMD0(0) */ if (cmd == CMD8) n = 0x87; /* Valid CRC for CMD8(0x1AA) */ xchg_spi(n); /* Receive command resp */ if (cmd == CMD12) xchg_spi(0xFF); /* Diacard following one byte when CMD12 */ n = 10; /* Wait for response (10 bytes max) */ do res = xchg_spi(0xFF); while ((res & 0x80) && --n); return res; /* Return received response */ } /*-------------------------------------------------------------------------- Public Functions ---------------------------------------------------------------------------*/ /* * Initialize disk drive * * drv: physical drive number (0) */ DSTATUS disk_initialize(uint8_t drv) { uint8_t n, cmd, ty, ocr[4]; if (drv) return STA_NOINIT; /* Supports only drive 0 */ power_on(); /* Initialize SPI */ if (Stat & STA_NODISK) return Stat; /* Is card existing in the socket? */ SPICLK_SLOW(); for (n = 10; n; n--) xchg_spi(0xFF); /* Send 80 dummy clocks */ ty = 0; if (send_cmd(CMD0, 0) == 1) { /* Put the card SPI/Idle state */ uint32_t target = MCF_SLT_SCNT(0) - (1000L * 1000L * 132); /* 1 sec */ if (send_cmd(CMD8, 0x1AA) == 1) { /* SDv2? */ for (n = 0; n < 4; n++) ocr[n] = xchg_spi(0xFF); /* Get 32 bit return value of R7 resp */ if (ocr[2] == 0x01 && ocr[3] == 0xAA) { /* Is the card supports vcc of 2.7-3.6V? */ while (MCF_SLT_SCNT(0) > target && send_cmd(ACMD41, 1UL << 30)) ; /* Wait for end of initialization with ACMD41(HCS) */ if (MCF_SLT_SCNT(0) > target && send_cmd(CMD58, 0) == 0) { /* Check CCS bit in the OCR */ for (n = 0; n < 4; n++) ocr[n] = xchg_spi(0xFF); ty = (ocr[0] & 0x40) ? CT_SD2 | CT_BLOCK : CT_SD2; /* Card id SDv2 */ } } } else { /* Not SDv2 card */ if (send_cmd(ACMD41, 0) <= 1) { /* SDv1 or MMC? */ ty = CT_SD1; cmd = ACMD41; /* SDv1 (ACMD41(0)) */ } else { ty = CT_MMC; cmd = CMD1; /* MMCv3 (CMD1(0)) */ } while (MCF_SLT_SCNT(0) > target && send_cmd(cmd, 0)) ; /* Wait for end of initialization */ if (!MCF_SLT_SCNT(0) > target || send_cmd(CMD16, 512) != 0) /* Set block length: 512 */ ty = 0; } } CardType = ty; /* Card type */ deselect(); if (ty) { /* OK */ SPICLK_FAST(); /* Set fast clock */ Stat &= ~STA_NOINIT; /* Clear STA_NOINIT flag */ } else { /* Failed */ power_off(); Stat = STA_NOINIT; } return Stat; } /*-----------------------------------------------------------------------*/ /* Get disk status */ /*-----------------------------------------------------------------------*/ DSTATUS disk_status ( uint8_t drv /* Physical drive number (0) */ ) { if (drv) return STA_NOINIT; /* Supports only drive 0 */ return Stat; /* Return disk status */ } /*-----------------------------------------------------------------------*/ /* Read sector(s) */ /*-----------------------------------------------------------------------*/ DRESULT disk_read ( uint8_t drv, /* Physical drive number (0) */ uint8_t *buff, /* Pointer to the data buffer to store read data */ uint32_t sector, /* Start sector number (LBA) */ uint8_t count /* Number of sectors to read (1..128) */ ) { if (drv || !count) return RES_PARERR; /* Check parameter */ if (Stat & STA_NOINIT) return RES_NOTRDY; /* Check if drive is ready */ if (!(CardType & CT_BLOCK)) sector *= 512; /* LBA ot BA conversion (byte addressing cards) */ if (count == 1) { /* Single sector read */ if ((send_cmd(CMD17, sector) == 0) /* READ_SINGLE_BLOCK */ && rcvr_datablock(buff, 512)) count = 0; } else { /* Multiple sector read */ if (send_cmd(CMD18, sector) == 0) { /* READ_MULTIPLE_BLOCK */ do { if (!rcvr_datablock(buff, 512)) break; buff += 512; } while (--count); send_cmd(CMD12, 0); /* STOP_TRANSMISSION */ } } deselect(); return count ? RES_ERROR : RES_OK; /* Return result */ } /*-----------------------------------------------------------------------*/ /* Write sector(s) */ /*-----------------------------------------------------------------------*/ #if _USE_WRITE DRESULT disk_write ( uint8_t drv, /* Physical drive number (0) */ const uint8_t *buff, /* Ponter to the data to write */ uint32_t sector, /* Start sector number (LBA) */ uint8_t count /* Number of sectors to write (1..128) */ ) { if (drv || !count) return RES_PARERR; /* Check parameter */ if (Stat & STA_NOINIT) return RES_NOTRDY; /* Check drive status */ if (Stat & STA_PROTECT) return RES_WRPRT; /* Check write protect */ if (!(CardType & CT_BLOCK)) sector *= 512; /* LBA ==> BA conversion (byte addressing cards) */ if (count == 1) { /* Single sector write */ if ((send_cmd(CMD24, sector) == 0) /* WRITE_BLOCK */ && xmit_datablock(buff, 0xFE)) count = 0; } else { /* Multiple sector write */ if (CardType & CT_SDC) send_cmd(ACMD23, count); /* Predefine number of sectors */ if (send_cmd(CMD25, sector) == 0) { /* WRITE_MULTIPLE_BLOCK */ do { if (!xmit_datablock(buff, 0xFC)) break; buff += 512; } while (--count); if (!xmit_datablock(0, 0xFD)) /* STOP_TRAN token */ count = 1; } } deselect(); return count ? RES_ERROR : RES_OK; /* Return result */ } #endif /*-----------------------------------------------------------------------*/ /* Miscellaneous drive controls other than data read/write */ /*-----------------------------------------------------------------------*/ #if _USE_IOCTL DRESULT disk_ioctl ( uint8_t drv, /* Physical drive number (0) */ uint8_t ctrl, /* Control command code */ void *buff /* Pointer to the conrtol data */ ) { DRESULT res; uint8_t n, csd[16], *ptr = buff; uint32_t *dp, st, ed, csize; if (drv) return RES_PARERR; /* Check parameter */ if (Stat & STA_NOINIT) return RES_NOTRDY; /* Check if drive is ready */ res = RES_ERROR; switch (ctrl) { case CTRL_SYNC : /* Wait for end of internal write process of the drive */ if (select()) { deselect(); res = RES_OK; } break; case GET_SECTOR_COUNT : /* Get drive capacity in unit of sector (DWORD) */ if ((send_cmd(CMD9, 0) == 0) && rcvr_datablock(csd, 16)) { if ((csd[0] >> 6) == 1) { /* SDC ver 2.00 */ csize = csd[9] + ((uint16_t)csd[8] << 8) + ((uint32_t)(csd[7] & 63) << 16) + 1; *(uint32_t*)buff = csize << 10; } else { /* SDC ver 1.XX or MMC ver 3 */ n = (csd[5] & 15) + ((csd[10] & 128) >> 7) + ((csd[9] & 3) << 1) + 2; csize = (csd[8] >> 6) + ((uint16_t)csd[7] << 2) + ((uint16_t)(csd[6] & 3) << 10) + 1; *(uint32_t*)buff = csize << (n - 9); } res = RES_OK; } break; case GET_SECTOR_SIZE : /* Get sector size in unit of byte (WORD) */ *(uint16_t*)buff = 512; res = RES_OK; break; case GET_BLOCK_SIZE : /* Get erase block size in unit of sector (DWORD) */ if (CardType & CT_SD2) { /* SDC ver 2.00 */ if (send_cmd(ACMD13, 0) == 0) { /* Read SD status */ xchg_spi(0xFF); if (rcvr_datablock(csd, 16)) { /* Read partial block */ for (n = 64 - 16; n; n--) xchg_spi(0xFF); /* Purge trailing data */ *(uint32_t*)buff = 16UL << (csd[10] >> 4); res = RES_OK; } } } else { /* SDC ver 1.XX or MMC */ if ((send_cmd(CMD9, 0) == 0) && rcvr_datablock(csd, 16)) { /* Read CSD */ if (CardType & CT_SD1) { /* SDC ver 1.XX */ *(uint32_t*)buff = (((csd[10] & 63) << 1) + ((uint16_t)(csd[11] & 128) >> 7) + 1) << ((csd[13] >> 6) - 1); } else { /* MMC */ *(uint32_t*)buff = ((uint16_t)((csd[10] & 124) >> 2) + 1) * (((csd[11] & 3) << 3) + ((csd[11] & 224) >> 5) + 1); } res = RES_OK; } } break; case CTRL_ERASE_SECTOR : /* Erase a block of sectors (used when _USE_ERASE == 1) */ if (!(CardType & CT_SDC)) break; /* Check if the card is SDC */ if (disk_ioctl(drv, MMC_GET_CSD, csd)) break; /* Get CSD */ if (!(csd[0] >> 6) && !(csd[10] & 0x40)) break; /* Check if sector erase can be applied to the card */ dp = buff; st = dp[0]; ed = dp[1]; /* Load sector block */ if (!(CardType & CT_BLOCK)) { st *= 512; ed *= 512; } if (send_cmd(CMD32, st) == 0 && send_cmd(CMD33, ed) == 0 && send_cmd(CMD38, 0) == 0 && wait_ready(30000)) /* Erase sector block */ res = RES_OK; /* FatFs does not check result of this command */ break; /* Following command are not used by FatFs module */ case MMC_GET_TYPE : /* Get MMC/SDC type (BYTE) */ *ptr = CardType; res = RES_OK; break; case MMC_GET_CSD : /* Read CSD (16 bytes) */ if (send_cmd(CMD9, 0) == 0 /* READ_CSD */ && rcvr_datablock(ptr, 16)) res = RES_OK; break; case MMC_GET_CID : /* Read CID (16 bytes) */ if (send_cmd(CMD10, 0) == 0 /* READ_CID */ && rcvr_datablock(ptr, 16)) res = RES_OK; break; case MMC_GET_OCR : /* Read OCR (4 bytes) */ if (send_cmd(CMD58, 0) == 0) { /* READ_OCR */ for (n = 4; n; n--) *ptr++ = xchg_spi(0xFF); res = RES_OK; } break; case MMC_GET_SDSTAT : /* Read SD status (64 bytes) */ if (send_cmd(ACMD13, 0) == 0) { /* SD_STATUS */ xchg_spi(0xFF); if (rcvr_datablock(ptr, 64)) res = RES_OK; } break; default: res = RES_PARERR; break; } deselect(); return res; } #endif /*-----------------------------------------------------------------------*/ /* Device timer function */ /*-----------------------------------------------------------------------*/ /* This function must be called from timer interrupt routine in period / of 1 ms to generate card control timing. */ #ifdef _NOT_USED_ void disk_timerproc (void) { uint8_t s; s = Stat; if (WP) /* Write protected */ s |= STA_PROTECT; else /* Write enabled */ s &= ~STA_PROTECT; //if (INS) /* Card is in socket */ s &= ~STA_NODISK; //else /* Socket empty */ // s |= (STA_NODISK | STA_NOINIT); Stat = s; } #endif /* _NOT_USED_ */