/* * Interrupts * * Handle interrupts, the levels. * * * This file is part of BaS_gcc. * * BaS_gcc is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * BaS_gcc is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with BaS_gcc. If not, see . * * Created on: 26.02.2013 * Author: Markus Fröschle */ #include #include "MCF5475.h" #include "bas_utils.h" #include "bas_printf.h" #include "bas_string.h" #include "exceptions.h" #include "interrupts.h" #include "bas_printf.h" #include "startcf.h" #include "cache.h" #include "util.h" #include "dma.h" #include "pci.h" //#define IRQ_DEBUG #if defined(IRQ_DEBUG) #define dbg(format, arg...) do { xprintf("DEBUG %s(): " format, __FUNCTION__, ##arg); } while (0) #else #define dbg(format, arg...) do { ; } while (0) #endif #define err(format, arg...) do { xprintf("DEBUG %s(): " format, __FUNCTION__, ##arg); } while (0) #ifndef MAX_ISR_ENTRY #define MAX_ISR_ENTRY (20) #endif struct isrentry { int vector; bool (*handler)(void *, void *); void *hdev; void *harg; }; static struct isrentry isrtab[MAX_ISR_ENTRY]; /* list of interrupt service routines */ /* * clear the table of interrupt service handlers */ void isr_init(void) { memset(isrtab, 0, sizeof(isrtab)); } bool isr_set_prio_and_level(int int_source, int priority, int level) { if (int_source > 8 && int_source <= 62) { /* * preset interrupt control registers with level and priority */ dbg("set MCF_INTC_ICR(%d) to priority %d, level %d\r\n", int_source, priority, level); MCF_INTC_ICR(int_source) = MCF_INTC_ICR_IP(priority) | MCF_INTC_ICR_IL(level); } else if (int_source >= 1 && int_source <= 8) { dbg("interrrupt control register for vector %d is read only!\r\n"); } else { err("invalid vector - interrupt control register not set.\r\n"); return false; } return true; } /* * enable internal int source in interrupt controller */ bool isr_enable_int_source(int int_source) { dbg("anding int_source %d, MCF_INTC_IMR%c = 0x%08x, now 0x%08x\r\n", int_source, int_source < 32 && int_source > 0 ? 'L' : int_source >= 32 && int_source <= 62 ? 'H' : 'U', int_source < 32 && int_source > 0 ? ~(1 << int_source) : int_source >= 32 && int_source <= 62 ? ~(1 << (int_source - 32)) : 0, MCF_INTC_IMRH); if (int_source < 32 && int_source > 0) { MCF_INTC_IMRL &= ~(1 << int_source); } else if (int_source >= 32 && int_source <= 62) { MCF_INTC_IMRH &= ~(1 << (int_source - 32)); } else { dbg("vector %d does not correspond to an internal interrupt source\r\n"); return false; } return true; } /* * This function places an interrupt handler in the ISR table, * thereby registering it so that the low-level handler may call it. * * The two parameters are intended for the first arg to be a * pointer to the device itself, and the second a pointer to a data * structure used by the device driver for that particular device. */ bool isr_register_handler(int vector, int level, int priority, bool (*handler)(void *, void *), void *hdev, void *harg) { int index; int int_source; if ((vector == 0) || (handler == NULL)) { dbg("illegal vector or handler!\r\n"); return false; } for (index = 0; index < MAX_ISR_ENTRY; index++) { if (isrtab[index].vector == vector) { /* one cross each, only! */ dbg("already set handler with this vector (%d, %d)\r\n", vector); return false; } if (isrtab[index].vector == 0) { isrtab[index].vector = vector; isrtab[index].handler = handler; isrtab[index].hdev = hdev; isrtab[index].harg = harg; int_source = vector - 64; if (!isr_enable_int_source(int_source)) { dbg("failed to enable internal interrupt souce %d in IMRL/IMRH\r\n", int_source); return false; } if (!isr_set_prio_and_level(int_source, priority, level)) { dbg("failed to set priority and level for interrupt source %d\r\n", int_source); return false; } return true; } } dbg("no available slots to register handler for vector %d\n\r", vector); return false; /* no available slots */ } void isr_remove_handler(bool (*handler)(void *, void *)) { /* * This routine removes from the ISR table all * entries that matches 'handler'. */ int index; for (index = 0; index < MAX_ISR_ENTRY; index++) { if (isrtab[index].handler == handler) { memset(&isrtab[index], 0, sizeof(struct isrentry)); return; } } dbg("no such handler registered (handler=%p\r\n", handler); } /* * This routine searches the ISR table for an entry that matches * 'vector'. If one is found, then 'handler' is executed. * * This routine returns either true or false where * true = interrupt has been handled, return to caller * false= interrupt has been handled or hasn't, but needs to be forwarded to TOS */ bool isr_execute_handler(int vector) { int index; dbg("vector = %d\r\n", vector); /* * locate an interrupt service routine handler. */ for (index = 0; index < MAX_ISR_ENTRY; index++) { if (isrtab[index].vector == vector) { isrtab[index].handler(isrtab[index].hdev, isrtab[index].harg); return true; } } err("no isr handler for vector %d found. Spurious?\r\n", vector); return true; } /* * PIC interrupt handler for Firebee * * Handles PIC requests that come in from PSC3 serial interface. Currently, that * is RTC/NVRAM requests only */ bool pic_interrupt_handler(void *arg1, void *arg2) { uint8_t rcv_byte; rcv_byte = MCF_PSC3_PSCRB_8BIT; if (rcv_byte == 2) /* PIC requests RTC data */ { uint8_t *rtc_reg = (uint8_t *) 0xffff8961; uint8_t *rtc_data = (uint8_t *) 0xffff8963; int index = 0; err("PIC interrupt: requesting RTC data\r\n"); MCF_PSC3_PSCTB_8BIT = 0x82; // header byte to PIC do { *rtc_reg = 0; MCF_PSC3_PSCTB_8BIT = *rtc_data; } while (index++ < 64); } return true; } bool xlbpci_interrupt_handler(void *arg1, void *arg2) { uint32_t reason; dbg("XLB PCI interrupt\r\n"); reason = MCF_PCI_PCIISR; if (reason & MCF_PCI_PCIISR_RE) { dbg("Retry error. Retry terminated or max retries reached. Cleared\r\n"); MCF_PCI_PCIISR |= MCF_PCI_PCIISR_RE; } if (reason & MCF_PCI_PCIISR_IA) { dbg("Initiator abort. No target answered in time. Cleared.\r\n"); MCF_PCI_PCIISR |= MCF_PCI_PCIISR_IA; } if (reason & MCF_PCI_PCIISR_TA) { dbg("Target abort. Cleared.\r\n"); MCF_PCI_PCIISR |= MCF_PCI_PCIISR_TA; } return true; } bool pciarb_interrupt_handler(void *arg1, void *arg2) { dbg("PCI ARB interrupt\r\n"); return true; } #if defined(MACHINE_FIREBEE) /* * This gets called from irq5 in exceptions.S * * IRQ5 are the "FBEE" (PIC, ETH PHY, PCI, DVI monitor sense and DSP) interrupts multiplexed by the FPGA interrupt handler */ bool irq5_handler(void *arg1, void *arg2) { uint32_t pending_interrupts = FBEE_INTR_PENDING; dbg("IRQ5!\r\n"); if (pending_interrupts & FBEE_INTR_PIC) { dbg("PIC interrupt\r\n"); FBEE_INTR_CLEAR = FBEE_INTR_PIC; } if (pending_interrupts & FBEE_INTR_ETHERNET) { dbg("ethernet 0 PHY interrupt\r\n"); FBEE_INTR_CLEAR = FBEE_INTR_ETHERNET; } if (pending_interrupts & FBEE_INTR_DVI) { dbg("DVI monitor sense interrupt\r\n"); FBEE_INTR_CLEAR = FBEE_INTR_DVI; } if (pending_interrupts & FBEE_INTR_PCI_INTA || pending_interrupts & FBEE_INTR_PCI_INTB || pending_interrupts & FBEE_INTR_PCI_INTC || pending_interrupts & FBEE_INTR_PCI_INTD) { dbg("PCI interrupt IRQ5\r\n"); FBEE_INTR_CLEAR = FBEE_INTR_PCI_INTA | FBEE_INTR_PCI_INTB | FBEE_INTR_PCI_INTC | FBEE_INTR_PCI_INTD; } if (pending_interrupts & FBEE_INTR_DSP) { dbg("DSP interrupt\r\n"); FBEE_INTR_CLEAR = FBEE_INTR_DSP; } if (pending_interrupts & FBEE_INTR_VSYNC || pending_interrupts & FBEE_INTR_HSYNC) { dbg("vsync or hsync interrupt!\r\n"); FBEE_INTR_CLEAR = FBEE_INTR_VSYNC | FBEE_INTR_HSYNC; /* hsync and vsync should go to TOS unhandled */ return false; } MCF_EPORT_EPFR |= (1 << 5); /* clear interrupt from edge port */ return true; } /* * blink the Firebee's LED to show we are still alive */ void blink_led(void) { static uint16_t blinker = 0; if ((blinker++ & 0x80) > 0) { MCF_GPIO_PODR_FEC1L |= (1 << 4); /* LED off */ } else { MCF_GPIO_PODR_FEC1L &= ~(1 << 4); /* LED on */ } } /* * Atari MFP interrupt registers. * * TODO: should go into a header file */ #define FALCON_MFP_IERA *((volatile uint8_t *) 0xfffffa07) #define FALCON_MFP_IERB *((volatile uint8_t *) 0xfffffa09) #define FALCON_MFP_IPRA *((volatile uint8_t *) 0xfffffa0b) #define FALCON_MFP_IPRB *((volatile uint8_t *) 0xfffffa0d) #define FALCON_MFP_IMRA *((volatile uint8_t *) 0xfffffa13) #define FALCON_MFP_IMRB *((volatile uint8_t *) 0xfffffa15) bool irq6_acsi_dma_interrupt(void) { dbg("ACSI DMA interrupt\r\n"); /* * TODO: implement handler */ return false; } bool irq6_handler(uint32_t sf1, uint32_t sf2) { //err("IRQ6!\r\n"); if (FALCON_MFP_IPRA || FALCON_MFP_IPRB) { blink_led(); } MCF_EPORT_EPFR |= (1 << 6); /* clear int6 from edge port */ return false; /* always forward IRQ6 to TOS */ } #else /* MACHINE_FIREBEE */ bool irq5_handler(void *arg1, void *arg2) { MCF_EPORT_EPFR |= (1 << 5); /* clear int5 from edge port */ return true; } bool irq6_handler(void *arg1, void *arg2) { err("IRQ6!\r\n"); MCF_EPORT_EPFR |= (1 << 6); /* clear int6 from edge port */ return false; /* always forward IRQ6 to TOS */ } /* * This gets called from irq7 in exceptions.S * Once we arrive here, the SR has been set to disable interrupts and the gcc scratch registers have been saved */ bool irq7_handler(void) { int32_t handle; int32_t value = 0; int32_t newvalue; MCF_EPORT_EPFR |= (1 << 7); dbg("IRQ7!\r\n"); if ((handle = pci_get_interrupt_cause()) > 0) { newvalue = pci_call_interrupt_chain(handle, value); if (newvalue == value) { dbg("interrupt not handled!\r\n"); } } MCF_EPORT_EPFR |= (1 << 7); /* clear int7 from edge port */ return true; } #endif /* MACHINE_M548X */ #if defined(MACHINE_FIREBEE) /* * this is the higlevel interrupt service routine for gpt0 timer interrupts. * * It is called from handler_gpt0 in exceptions.S * * The gpt0 timer is not used as a timer, but as interrupt trigger by the FPGA which fires * everytime the video base address high byte (0xffff8201) gets written by user code (i.e. * everytime the video base address is set). * The interrupt service routine checks if that page was already set as a video page (in that * case it does nothing), if not (if we have a newly set page), it sets up an MMU mapping for * that page (effectively rerouting any further access to Falcon video RAM to Firebee FPGA * video RAM starting at 0x60000000) and copies SDRAM contents of that page to the video * RAM page. */ bool gpt0_interrupt_handler(void *arg0, void *arg1) { dbg("handler called\n\r"); MCF_GPT0_GMS &= ~1; /* rearm trigger */ NOP(); MCF_GPT0_GMS |= 1; return true; } #endif /* MACHINE_FIREBEE */