/*
* pci.c
*
* Purpose: PCI configuration for the Coldfire builtin PCI bridge.
*
* Notes:
*
* This file is part of BaS_gcc.
*
* BaS_gcc is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* BaS_gcc is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with BaS_gcc. If not, see .
*
* Created on: 08.01.2013
* Author: Markus Froeschle
*/
#include
#include "pci.h"
#include "stdint.h"
#include "bas_printf.h"
#include "bas_string.h"
#include "util.h"
#include "interrupts.h"
#include "wait.h"
//#define DEBUG_PCI
#ifdef DEBUG_PCI
#define debug_printf(format, arg...) do { xprintf("DEBUG: " format "", ##arg); } while (0)
#else
#define debug_printf(format, arg...) do { ; } while (0)
#endif /* DEBUG_PCI */
#if MACHINE_FIREBEE
#define pci_config_wait() wait(40000); /* FireBee USB not properly detected otherwise !?? */
#elif MACHINE_M5484LITE
#define pci_config_wait() do { __asm__ __volatile("tpf" :::); } while (0)
#endif
/*
* PCI device class descriptions displayed during PCI bus scan
*/
static struct pci_class
{
int classcode;
char *description;
} pci_classes[] =
{
{ 0x00, "device was built prior definition of the class code field" },
{ 0x01, "Mass Storage Controller" },
{ 0x02, "Network Controller" },
{ 0x03, "Display Controller" },
{ 0x04, "Multimedia Controller" },
{ 0x05, "Memory Controller" },
{ 0x06, "Bridge Device" },
{ 0x07, "Simple Communication Controller" },
{ 0x08, "Base System Peripherial" },
{ 0x09, "Input Device" },
{ 0x0a, "Docking Station" },
{ 0x0b, "Processor" },
{ 0x0c, "Serial Bus Controller" },
{ 0x0d, "Wireless Controller" },
{ 0x0e, "Intelligent I/O Controller" },
{ 0x0f, "Satellite Communication Controller" },
{ 0x10, "Encryption/Decryption Controller" },
{ 0x11, "Data Acquisition and Signal Processing Controller" },
{ 0xff, "Device does not fit any defined class" },
};
static int num_pci_classes = sizeof(pci_classes) / sizeof(struct pci_class);
#define NUM_CARDS 10
#define NUM_RESOURCES 6
/* holds the handle of a card at position = array index */
static int32_t handles[NUM_CARDS];
/* holds the card's resource descriptors; filled in pci_device_config() */
static struct pci_rd resource_descriptors[NUM_CARDS][NUM_RESOURCES];
__attribute__((aligned(16))) void chip_errata_135(void)
{
/*
* Errata type: Silicon
* Affected component: PCI
* Description: When core PCI transactions that involve writes to configuration or I/O space
* are followed by a core line access to line addresses 0x4 and 0xC, core access
* to the XL bus can hang.
* Workaround: Prevent PCI configuration and I/O writes from being followed by the described
* line access by the core by generating a known good XL bus transaction after
* the PCI transaction.
* Create a dummy function which is called immediately after each of the affected
* transactions. There are three requirements for this dummy function.
* 1. The function must be aligned to a 16-byte boundary.
* 2. The function must contain a dummy write to a location on the XL bus,
* preferably one with no side effects.
* 3. The function must be longer than 32 bytes. If it is not, the function should
* be padded with 16- or 48-bit TPF instructions placed after the end of
* the function (after the RTS instruction) such that the length is longer
* than 32 bytes.
*/
__asm__ __volatile(
" .extern __MBAR\n\t"
" clr.l d0\n\t"
" move.l d0,__MBAR+0xF0C\n\t" /* Must use direct addressing. write to EPORT module */
/* xlbus -> slavebus -> eport, writing '0' to register */
/* has no effect */
" rts\n\t"
" tpf.l #0x0\n\t"
" tpf.l #0x0\n\t"
" tpf.l #0x0\n\t"
" tpf.l #0x0\n\t"
" tpf.l #0x0\n\t"
:::);
}
__attribute__((interrupt)) void pci_arb_interrupt(void)
{
debug_printf("XLBARB slave error interrupt\r\n");
MCF_XLB_XARB_SR |= ~MCF_XLB_XARB_SR_SEA;
}
__attribute__((interrupt)) void xlb_pci_interrupt(void)
{
debug_printf("XLBPCI interrupt\r\n");
}
__attribute__((interrupt)) void pci_interrupt(void)
{
}
/*
* retrieve handle for i'th device
*/
static int handle2index(int32_t handle)
{
int i;
for (i = 0; i < NUM_CARDS; i++)
{
if (handles[i] == handle)
{
return i;
}
}
return -1;
}
/*
* retrieve device class (in cleartext) for a PCI classcode
*/
static char *device_class(int classcode)
{
int i;
for (i = 0; i < num_pci_classes; i++)
{
if (pci_classes[i].classcode == classcode)
{
return pci_classes[i].description;
}
}
return "not found";
}
/*
* read an uint32_t from configuration space of card with handle and offset
*
* The returned value is in little endian format.
*/
uint32_t pci_read_config_longword(int32_t handle, int offset)
{
uint32_t value;
/* initiate PCI configuration access to device */
MCF_PCI_PCICAR = MCF_PCI_PCICAR_E | /* enable configuration access special cycle */
MCF_PCI_PCICAR_BUSNUM(PCI_BUS_FROM_HANDLE(handle)) |
MCF_PCI_PCICAR_DEVNUM(PCI_DEVICE_FROM_HANDLE(handle)) | /* device number, devices 0 - 9 are reserved */
MCF_PCI_PCICAR_FUNCNUM(PCI_FUNCTION_FROM_HANDLE(handle)) | /* function number */
MCF_PCI_PCICAR_DWORD(offset / 4);
__asm__ __volatile__("nop" ::: "memory"); /* this is what the Linux BSP does */
pci_config_wait();
value = * (volatile uint32_t *) PCI_IO_OFFSET; /* access device */
__asm__ __volatile__("tpf" ::: "memory"); /* this is what the Linux BSP does */
/* finish PCI configuration access special cycle (allow regular PCI accesses) */
MCF_PCI_PCICAR &= ~MCF_PCI_PCICAR_E;
return value;
}
uint16_t pci_read_config_word(int32_t handle, int offset)
{
uint16_t value;
/*
* initiate PCI configuration space access to device
*/
MCF_PCI_PCICAR = MCF_PCI_PCICAR_E | /* enable configuration space special cycle */
MCF_PCI_PCICAR_BUSNUM(PCI_BUS_FROM_HANDLE(handle)) |
MCF_PCI_PCICAR_DEVNUM(PCI_DEVICE_FROM_HANDLE(handle)) |
MCF_PCI_PCICAR_FUNCNUM(PCI_FUNCTION_FROM_HANDLE(handle)) |
MCF_PCI_PCICAR_DWORD(offset / 4);
__asm__ __volatile("nop" ::: "memory"); /* this is what Linux BSP does */
value = * (volatile uint16_t *) PCI_IO_OFFSET + (offset & 2);
__asm__ __volatile("tpf" ::: "memory");
/* finish PCI configuration access special cycle */
MCF_PCI_PCICAR &= ~MCF_PCI_PCICAR_E;
return value;
}
uint8_t pci_read_config_byte(int32_t handle, int offset)
{
uint8_t value;
/* initiate PCI configuration access to device */
MCF_PCI_PCICAR = MCF_PCI_PCICAR_E | /* enable configuration access special cycle */
MCF_PCI_PCICAR_BUSNUM(PCI_BUS_FROM_HANDLE(handle)) |
MCF_PCI_PCICAR_DEVNUM(PCI_DEVICE_FROM_HANDLE(handle)) | /* device number, devices 0 - 9 are reserved */
MCF_PCI_PCICAR_FUNCNUM(PCI_FUNCTION_FROM_HANDLE(handle)) | /* function number */
MCF_PCI_PCICAR_DWORD(offset / 4);
__asm__ __volatile__("nop" ::: "memory");
value = * (volatile uint8_t *) (PCI_IO_OFFSET + (offset & 3));
__asm__ __volatile__("tpf" ::: "memory");
MCF_PCI_PCICAR &= ~MCF_PCI_PCICAR_E;
return value;
}
/*
* pci_write_config_longword()
*
* write an uint32_t value (must be in little endian format) to the configuration space of a PCI device
*/
int32_t pci_write_config_longword(int32_t handle, int offset, uint32_t value)
{
/* initiate PCI configuration access to device */
MCF_PCI_PCICAR = MCF_PCI_PCICAR_E | /* enable configuration access special cycle */
MCF_PCI_PCICAR_BUSNUM(PCI_BUS_FROM_HANDLE(handle)) |
MCF_PCI_PCICAR_DEVNUM(PCI_DEVICE_FROM_HANDLE(handle)) | /* device number, devices 0 - 9 are reserved */
MCF_PCI_PCICAR_FUNCNUM(PCI_FUNCTION_FROM_HANDLE(handle)) | /* function number */
MCF_PCI_PCICAR_DWORD(offset / 4);
__asm__ __volatile__("nop" ::: "memory");
* (volatile uint32_t *) PCI_IO_OFFSET = value; /* access device */
__asm__ __volatile__("tpf" ::: "memory");
/* finish configuration space access cycle */
MCF_PCI_PCICAR &= ~MCF_PCI_PCICAR_E;
chip_errata_135();
return PCI_SUCCESSFUL;
}
/*
* write a 16-bit value to config space. Must be in little-endian format
*/
int32_t pci_write_config_word(int32_t handle, int offset, uint16_t value)
{
/* initiate PCI configuration access to device */
MCF_PCI_PCICAR = MCF_PCI_PCICAR_E | /* enable configuration access special cycle */
MCF_PCI_PCICAR_BUSNUM(PCI_BUS_FROM_HANDLE(handle)) |
MCF_PCI_PCICAR_DEVNUM(PCI_DEVICE_FROM_HANDLE(handle)) |
MCF_PCI_PCICAR_FUNCNUM(PCI_FUNCTION_FROM_HANDLE(handle)) |
MCF_PCI_PCICAR_DWORD(offset / 4);
__asm__ __volatile__("tpf" ::: "memory");
* (volatile uint16_t *) (PCI_IO_OFFSET + (offset & 2)) = value;
__asm__ __volatile__("tpf" ::: "memory");
/* finish configuration space access cycle */
MCF_PCI_PCICAR &= ~MCF_PCI_PCICAR_E;
chip_errata_135();
return PCI_SUCCESSFUL;
}
/*
* write a single byte to config space
*/
int32_t pci_write_config_byte(int32_t handle, int offset, uint8_t value)
{
MCF_PCI_PCICAR = MCF_PCI_PCICAR_E |
MCF_PCI_PCICAR_BUSNUM(PCI_BUS_FROM_HANDLE(handle)) |
MCF_PCI_PCICAR_DEVNUM(PCI_DEVICE_FROM_HANDLE(handle)) |
MCF_PCI_PCICAR_FUNCNUM(PCI_FUNCTION_FROM_HANDLE(handle)) |
MCF_PCI_PCICAR_DWORD(offset / 4);
__asm__ __volatile__("tpf" ::: "memory");
* (volatile uint8_t *) (PCI_IO_OFFSET + (offset & 3)) = value;
__asm__ __volatile__("tpf" ::: "memory");
/* finish configuration space access cycle */
MCF_PCI_PCICAR &= ~MCF_PCI_PCICAR_E;
chip_errata_135();
return PCI_SUCCESSFUL;
}
/*
* pci_get_resource
*
* get resource descriptor chain for handle
*/
struct pci_rd *pci_get_resource(int32_t handle)
{
int index = -1;
struct pci_rd *ret;
index = handle2index(handle);
if (index == -1)
ret = NULL;
else
ret = &resource_descriptors[index][0];
debug_printf("pci_get_resource: resource struct for handle %lx (index %d) is at %p\r\n", handle, index, ret);
return ret;
}
/*
* pci_find_device()
*
* find index'th device by device_id and vendor_id. Special case: vendor id -1 (0xffff)
* matches all devices. You can search the whole bus by repeatedly calling this function
*/
int32_t pci_find_device(uint16_t device_id, uint16_t vendor_id, int index)
{
uint16_t bus;
uint16_t device;
uint16_t function = 0;
uint16_t n = 0;
int32_t handle;
for (bus = 0; bus < 2; bus++)
{
for (device = 10; device < 31; device++)
{
uint32_t value;
uint8_t htr;
handle = PCI_HANDLE(bus, device, 0);
value = pci_read_config_longword(handle, PCIIDR);
if (value != 0xffffffff) /* we have a device at this position */
{
if (vendor_id == 0xffff ||
(PCI_VENDOR_ID(value) == vendor_id && PCI_DEVICE_ID(value) == device_id))
{
if (n == index)
{
return handle;
}
n++;
}
/*
* There is a device at this position, but not the one we are looking for.
* Check to see if it is a multi-function device. We need to look "behind" it
* for the other functions in that case.
*/
if ((htr = pci_read_config_byte(handle, PCIHTR)) & 0x80)
{
/* yes, this is a multi-function device, look for more functions */
for (function = 1; function < 8; function++)
{
handle = PCI_HANDLE(bus, device, function);
value = pci_read_config_longword(handle, PCIIDR);
if (value != 0xFFFFFFFF) /* device found */
{
if (vendor_id == 0xffff ||
(PCI_VENDOR_ID(value) == vendor_id && PCI_DEVICE_ID(value) == device_id))
{
if (n == index)
{
return handle;
}
n++;
}
}
}
}
}
}
}
return PCI_DEVICE_NOT_FOUND;
}
int32_t pci_hook_interrupt(int32_t handle, void *handler, void *parameter)
{
/* FIXME: implement */
debug_printf("pci_hook_interrupt() still not implemented\r\n");
return PCI_SUCCESSFUL;
}
int32_t pci_unhook_interrupt(int32_t handle)
{
/* FIXME: implement */
debug_printf("pci_unhook_interrupt() still not implemented\r\n");
return PCI_SUCCESSFUL;
}
/*
* pci_device_config()
*
* Map card resources, adjust BARs and fill resource descriptors
*/
static void pci_device_config(uint16_t bus, uint16_t device, uint16_t function)
{
uint32_t address;
int32_t handle;
int16_t index = - 1;
uint8_t il;
struct pci_rd *descriptors;
int i;
uint32_t value;
static uint32_t mem_address = PCI_MEMORY_OFFSET;
static uint32_t io_address = PCI_IO_OFFSET;
uint16_t cr;
/* determine pci handle from bus, device + function number */
handle = PCI_HANDLE(bus, device, function);
/* find index into resource descriptor table for handle */
index = handle2index(handle);
if (index == -1)
{
debug_printf("cannot find index for handle %d\r\n", handle);
return;
}
/*
* disable device
*/
cr = swpw(pci_read_config_word(handle, PCICSR));
cr &= ~3; /* disable device response to address */
pci_write_config_word(handle, PCICSR, swpw(cr));
int barnum = 0;
descriptors = resource_descriptors[index];
for (i = 0; i < 6 * 4; i += 4) /* for all bars */
{
/*
* read BAR[i] value
*/
value = swpl(pci_read_config_longword(handle, PCIBAR0 + i));
/*
* write all bits of BAR[i]
*/
pci_write_config_longword(handle, PCIBAR0 + i, 0xffffffff);
/*
* read back value to see which bits have been set
*/
address = swpl(pci_read_config_longword(handle, PCIBAR0 + i));
if (address) /* is bar in use? */
{
/*
* resource descriptor for this device
*/
struct pci_rd *rd = &descriptors[barnum];
if (IS_PCI_MEM_BAR(value))
{
/* adjust base address to card's alignment requirements */
int size = ~(address & 0xfffffff0) + 1;
debug_printf("device 0x%x: BAR[%d] requests %d bytes of memory\r\n", handle, i / 4, size);
/* calculate a valid map adress with alignment requirements */
address = (mem_address + size - 1) & ~(size - 1);
/* write it to the BAR */
pci_write_config_longword(handle, PCIBAR0 + i, swpl(address));
/* read it back, just to be sure */
value = swpl(pci_read_config_longword(handle, PCIBAR0 + i)) & ~1;
debug_printf("set PCIBAR%d on device 0x%02x to 0x%08x\r\n",
i / 4, handle, value);
/* fill resource descriptor */
rd->next = sizeof(struct pci_rd);
rd->flags = 0 | FLG_32BIT | FLG_16BIT | FLG_8BIT | 2; /* little endian, lane swapped */
rd->start = address;
rd->length = size;
rd->offset = 0;
rd->dmaoffset = 0;
/* adjust memory adress for next turn */
mem_address += size;
cr |= 2;
/* index to next unused resource descriptor */
barnum++;
}
else if (IS_PCI_IO_BAR(value)) /* same as above for I/O resources */
{
int size = ~(address & 0xfffffffc) + 1;
debug_printf("device 0x%x: BAR[%d] requests %d bytes of I/O space\r\n", handle, i, size);
address = (io_address + size - 1) & ~(size - 1);
pci_write_config_longword(handle, PCIBAR0 + i, swpl(address | 1));
value = swpl(pci_read_config_longword(handle, PCIBAR0 + i));
debug_printf("set PCIBAR%d on device 0x%02x to 0x%08x\r\n",
i / 4, handle, value);
rd->next = sizeof(struct pci_rd);
rd->flags = FLG_IO | FLG_8BIT | FLG_16BIT | FLG_32BIT | 2;
rd->start = address;
rd->offset = 0;
rd->length = size;
rd->dmaoffset = 0;
io_address += size;
cr |= 1;
barnum++;
}
/* check if device requests an interrupt */
il = pci_read_config_byte(handle, PCIIPR);
xprintf("device requests interrupts on interrupt pin %d\r\n", il);
/* if so, register interrupts */
}
}
/* mark end of resource chain */
if (barnum > 0)
descriptors[barnum - 1].flags |= FLG_LAST;
/*
* enable device memory or I/O access
*/
pci_write_config_word(handle, PCICSR, swpw(cr));
}
static void pci_bridge_config(uint16_t bus, uint16_t device, uint16_t function)
{
int32_t handle;
if (function != 0)
{
debug_printf("trying to configure a multi-function bridge. Cancelled\r\n");
return;
}
handle = PCI_HANDLE(bus, device, function);
pci_write_config_longword(handle, PCIBAR0, 0x40000000);
pci_write_config_longword(handle, PCIBAR1, 0x0);
pci_write_config_longword(handle, PCICSR, 0x146);
}
/*
* scan PCI bus and display devices found. Create a handle for each device and call pci_device_config() for it
*/
void pci_scan(void)
{
int16_t handle;
int16_t index = 0;
xprintf("\r\nPCI bus scan...\r\n\r\n");
xprintf(" Bus| Dev|Func|Vndr|D-ID|Hndl|\r\n");
xprintf("----+----+----+----+----+----+\r\n");
handle = pci_find_device(0x0, 0xFFFF, index);
while (handle > 0)
{
uint32_t value;
value = pci_read_config_longword(handle, PCIIDR);
xprintf(" %02x | %02x | %02x |%04x|%04x|%04x| %s (0x%02x)\r\n",
PCI_BUS_FROM_HANDLE(handle),
PCI_DEVICE_FROM_HANDLE(handle),
PCI_FUNCTION_FROM_HANDLE(handle),
PCI_VENDOR_ID(value), PCI_DEVICE_ID(value),
handle,
device_class(pci_read_config_byte(handle, PCICCR)),
pci_read_config_byte(handle, PCICCR));
/* save handle to index value so that we'll be able to later find our resources */
handles[index] = handle;
if (PCI_VENDOR_ID(value) != 0x1057 && PCI_DEVICE_ID(value) != 0x5806) /* do not configure bridge */
{
/* configure memory and I/O for card */
pci_device_config(PCI_BUS_FROM_HANDLE(handle),
PCI_DEVICE_FROM_HANDLE(handle),
PCI_FUNCTION_FROM_HANDLE(handle));
}
else
{
pci_bridge_config(PCI_BUS_FROM_HANDLE(handle),
PCI_DEVICE_FROM_HANDLE(handle),
PCI_FUNCTION_FROM_HANDLE(handle));
}
handle = pci_find_device(0x0, 0xFFFF, ++index);
}
xprintf("\r\n...finished\r\n");
}
/* start of PCI initialization code */
void init_eport(void)
{
/* configure IRQ1-7 pins on EPORT falling edge triggered */
MCF_EPORT_EPPAR = MCF_EPORT_EPPAR_EPPA7(MCF_EPORT_EPPAR_FALLING) |
MCF_EPORT_EPPAR_EPPA6(MCF_EPORT_EPPAR_FALLING) |
#if MACHINE_FIREBEE /* irq5 level triggered on FireBee */
MCF_EPORT_EPPAR_EPPA5(MCF_EPORT_EPPAR_LEVEL) |
#elif MACHINE_M5484LITE
MCF_EPORT_EPPAR_EPPA5(MCF_EPORT_EPPAR_FALLING) |
#endif /* MACHINE_FIREBEE */
MCF_EPORT_EPPAR_EPPA4(MCF_EPORT_EPPAR_FALLING) |
MCF_EPORT_EPPAR_EPPA3(MCF_EPORT_EPPAR_FALLING) |
MCF_EPORT_EPPAR_EPPA2(MCF_EPORT_EPPAR_FALLING) |
MCF_EPORT_EPPAR_EPPA1(MCF_EPORT_EPPAR_FALLING);
MCF_EPORT_EPDDR = 0; /* clear data direction register. All pins as input */
MCF_EPORT_EPFR = -1; /* clear all EPORT interrupt flags */
MCF_EPORT_EPIER = 0xfe; /* enable all EPORT interrupts (for now) */
}
void init_xlbus_arbiter(void)
{
uint8_t clock_ratio;
/* setup XL bus arbiter */
clock_ratio = (MCF_PCI_PCIGSCR >> 24) & 0x07;
if (clock_ratio == 4)
{
MCF_XLB_XARB_CFG = MCF_XLB_XARB_CFG_BA |
MCF_XLB_XARB_CFG_DT |
MCF_XLB_XARB_CFG_AT |
MCF_XLB_XARB_CFG_PLDIS;
}
else
{
MCF_XLB_XARB_CFG = MCF_XLB_XARB_CFG_BA |
MCF_XLB_XARB_CFG_DT |
MCF_XLB_XARB_CFG_AT;
}
MCF_XLB_XARB_ADRTO = 0x1fffff;
MCF_XLB_XARB_DATTO = 0x1fffff;
MCF_XLB_XARB_BUSTO = 0xffffff;
/*
* set arbitration priorities for XL bus masters
*
* M0 = ColdFire core
* M2 = Multichannel DMA
* M3 = PCI target interface
*/
MCF_XLB_XARB_PRIEN = MCF_XLB_XARB_PRIEN_M0 | /* activate programmed priority for Coldfire core */
MCF_XLB_XARB_PRIEN_M2 | /* activate programmed priority for Multichannel DMA */
MCF_XLB_XARB_PRIEN_M3; /* activate programmed priority for PCI target interface */
MCF_XLB_XARB_PRI = MCF_XLB_XARB_PRI_M0P(7) | /* Coldfire core gets lowest */
MCF_XLB_XARB_PRI_M2P(5) | /* Multichannel DMA mid priority */
MCF_XLB_XARB_PRI_M3P(3); /* PCI target interface is highest priority */
}
void init_pci(void)
{
int res;
xprintf("initializing PCI bridge:\r\n");
(void) res; /* for now */
res = register_interrupt_handler(0, INT_SOURCE_PCIARB, 5, 5, pci_arb_interrupt);
debug_printf("registered interrupt handler for PCI arbiter: %s\r\n",
(res < 0 ? "failed" : "succeeded"));
register_interrupt_handler(0, INT_SOURCE_XLBPCI, 5, 5, xlb_pci_interrupt);
debug_printf("registered interrupt handler for XLB PCI: %s\r\n",
(res < 0 ? "failed" : "succeeded"));
init_eport();
init_xlbus_arbiter();
MCF_PCI_PCIGSCR = 1; /* reset PCI */
/*
* setup the PCI arbiter
*/
MCF_PCIARB_PACR = MCF_PCIARB_PACR_INTMPRI /* internal master priority: high */
| MCF_PCIARB_PACR_EXTMPRI(0xf) /* external master priority: high */
| MCF_PCIARB_PACR_INTMINTEN /* enable "internal master broken" interrupt */
| MCF_PCIARB_PACR_EXTMINTEN(0x0f); /* enable "external master broken" interrupt */
#ifdef _NOT_USED_ /* since this is already done in sysinit.c */
#if MACHINE_FIREBEE
//MCF_PAD_PAR_PCIBG = 0x3f; // FIXME: MiNT initialization hangs if this is enabled ???
//MCF_PAD_PAR_PCIBR = 0x3f;
#elif MACHINE_M5484LITE
MCF_PAD_PAR_PCIBG = 0x3ff; /* enable all PCI bus grant and bus requests on the LITE board */
MCF_PAD_PAR_PCIBR = 0x3ff;
#endif /* MACHINE_FIREBEE */
#endif /* _NOT_USED_ */
MCF_PCI_PCISCR = MCF_PCI_PCISCR_M | /* memory access control enabled */
MCF_PCI_PCISCR_B | /* bus master enabled */
MCF_PCI_PCISCR_M | /* mem access enable */
MCF_PCI_PCISCR_MA | /* clear master abort error */
MCF_PCI_PCISCR_MW; /* memory write and invalidate enabled */
/* Setup burst parameters */
MCF_PCI_PCICR1 = MCF_PCI_PCICR1_CACHELINESIZE(8) |
MCF_PCI_PCICR1_LATTIMER(0xff); /* TODO: test increased latency timer */
#ifdef _NOT_USED_
MCF_PCI_PCICR2 = MCF_PCI_PCICR2_MINGNT(1) |
MCF_PCI_PCICR2_MAXLAT(32);
#endif /* _NOT_USED_ */
MCF_PCI_PCICR2 = 0; /* this is what Linux does */
/* error signaling */
#ifdef NOT_USED
MCF_PCI_PCIICR = MCF_PCI_PCIICR_TAE | /* target abort enable */
MCF_PCI_PCIICR_IAE; /* initiator abort enable */
#endif /* NOT_USED */
MCF_PCI_PCIICR = 0; /* this is what Linux does */
MCF_PCI_PCIGSCR |= MCF_PCI_PCIGSCR_SEE; /* system error interrupt enable */
/* Configure Initiator Windows */
/* initiator window 0 base / translation adress register */
MCF_PCI_PCIIW0BTAR = (PCI_MEMORY_OFFSET | (((PCI_MEMORY_SIZE - 1) >> 8) & 0xffff0000))
| ((PCI_MEMORY_OFFSET >> 16) & 0xff00);
debug_printf("PCIIW0BTAR=0x%08x\r\n", MCF_PCI_PCIIW0BTAR);
/* initiator window 1 base / translation adress register */
MCF_PCI_PCIIW1BTAR = (PCI_IO_OFFSET | ((PCI_IO_SIZE - 1) >> 8)) & 0xffff0000;
/* initiator window 2 base / translation address register */
MCF_PCI_PCIIW2BTAR = 0L; /* not used */
/* initiator window configuration register */
MCF_PCI_PCIIWCR = MCF_PCI_PCIIWCR_WINCTRL0_MEMRDLINE |
MCF_PCI_PCIIWCR_WINCTRL1_IO |
MCF_PCI_PCIIWCR_WINCTRL0_E |
MCF_PCI_PCIIWCR_WINCTRL1_E;
/*
* Initialize target control register.
* Used when an external bus master accesses the Coldfire PCI as target
*/
MCF_PCI_PCIBAR0 = 0x40000000; /* 256 kB window */
MCF_PCI_PCITBATR0 = (uint32_t) &_MBAR[0] | MCF_PCI_PCITBATR0_EN; /* target base address translation register 0 */
MCF_PCI_PCIBAR1 = 0; /* 1GB window */
MCF_PCI_PCITBATR1 = MCF_PCI_PCITBATR1_EN;
/* reset PCI devices */
MCF_PCI_PCIGSCR &= ~MCF_PCI_PCIGSCR_PR;
do {;} while (MCF_PCI_PCIGSCR & MCF_PCI_PCIGSCR_PR); /* wait until reset finished */
xprintf("finished\r\n");
/* initialize/clear resource descriptor table */
memset(&resource_descriptors, 0, NUM_CARDS * NUM_RESOURCES * sizeof(struct pci_rd));
/* initialize/clear handles array */
memset(handles, 0, NUM_CARDS * sizeof(int32_t));
/*
* do normal initialization
*/
pci_scan();
#ifdef DEBUG_PCI
int index = 0;
int handle;
handle = pci_find_device(0x0, 0xFFFF, ++index);
while (handle > 0)
{
uint32_t value;
uint32_t addr;
value = pci_read_config_longword(handle, PCIIDR);
xprintf(" %02x | %02x | %02x |%04x|%04x|%04x| %s (0x%02x)\r\n",
PCI_BUS_FROM_HANDLE(handle),
PCI_DEVICE_FROM_HANDLE(handle),
PCI_FUNCTION_FROM_HANDLE(handle),
PCI_VENDOR_ID(value), PCI_DEVICE_ID(value),
handle,
device_class(pci_read_config_byte(handle, PCICCR)),
pci_read_config_byte(handle, PCICCR));
pci_print_device_abilities(handle);
pci_print_device_config(handle);
/* read some value from PCIBAR0 */
addr = swpl(pci_read_config_longword(handle, PCIBAR0)) & ~0x1f;
xprintf("%p = %08x\r\n", addr, * (uint32_t *) addr);
pci_print_device_abilities(handle);
pci_print_device_config(handle);
handle = pci_find_device(0x0, 0xFFFF, ++index);
}
#endif /* DEBUG_PCI */
}
#ifdef DEBUG_PCI
void pci_print_device_abilities(int32_t handle)
{
uint16_t value;
uint16_t saved_value;
saved_value = pci_read_config_word(handle, PCICSR);
pci_write_config_word(handle, PCICSR, 0xffff);
value = swpw(pci_read_config_word(handle, PCICSR));
debug_printf("IO: %1d MEM: %1d MSTR:%1d SPCC: %1d MEMW: %1d VGAS: %1d PERR: %1d STEP: %1d SERR: %1d FBTB: %1d\r\n",
value & PCICSR_IO ? 1 : 0,
value & PCICSR_MEMORY ? 1 : 0,
value & PCICSR_MASTER ? 1 : 0,
value & PCICSR_SPECIAL ? 1 : 0,
value & PCICSR_MEMWI ? 1 : 0,
value & PCICSR_VGA_SNOOP ? 1 : 0,
value & PCICSR_PERR ? 1 : 0,
value & PCICSR_STEPPING ? 1 : 0,
value & PCICSR_SERR ? 1 : 0,
value & PCICSR_FAST_BTOB_E ? 1 : 0);
pci_write_config_word(handle, PCICSR, saved_value);
}
void pci_print_device_config(int32_t handle)
{
uint16_t value;
value = swpw(pci_read_config_word(handle, PCICSR + 2));
debug_printf("66M: %1d UDF: %1d FB2B:%1d PERR: %1d TABR: %1d DABR: %1d SERR: %1d PPER: %1d\r\n",
value & PCICSR_66MHZ ? 1 : 0,
value & PCICSR_UDF ? 1 : 0,
value & PCICSR_FAST_BTOB ? 1 : 0,
value & PCICSR_DPARITY_ERROR ? 1 : 0,
value & PCICSR_T_ABORT_S ? 1 : 0,
value & PCICSR_T_ABORT_R ? 1 : 0,
value & PCICSR_M_ABORT_R ? 1 : 0,
value & PCICSR_S_ERROR_S ? 1 : 0,
value & PCICSR_PARITY_ERR ? 1 : 0);
}
#endif /* DEBUG_PCI */