/* * pci.c * * Purpose: PCI configuration for the Coldfire builtin PCI bridge. * * Notes: * * This file is part of BaS_gcc. * * BaS_gcc is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * BaS_gcc is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with BaS_gcc. If not, see . * * Created on: 08.01.2013 * Author: Markus Froeschle */ #include #include "pci.h" #include "stdint.h" #include "bas_printf.h" #include "bas_string.h" #include "util.h" #include "interrupts.h" #include "wait.h" //#define DEBUG_PCI #ifdef DEBUG_PCI #define dbg(format, arg...) do { xprintf("DEBUG: %s(): " format, __FUNCTION__, ##arg); } while (0) #else #define dbg(format, arg...) do { ; } while (0) #endif /* DEBUG_PCI */ #define pci_config_wait() do { __asm__ __volatile("tpf" ::: "memory"); } while (0) /* * PCI device class descriptions displayed during PCI bus scan */ static struct pci_class { int classcode; char *description; } pci_classes[] = { { 0x00, "device was built prior definition of the class code field" }, { 0x01, "Mass Storage Controller" }, { 0x02, "Network Controller" }, { 0x03, "Display Controller" }, { 0x04, "Multimedia Controller" }, { 0x05, "Memory Controller" }, { 0x06, "Bridge Device" }, { 0x07, "Simple Communication Controller" }, { 0x08, "Base System Peripherial" }, { 0x09, "Input Device" }, { 0x0a, "Docking Station" }, { 0x0b, "Processor" }, { 0x0c, "Serial Bus Controller" }, { 0x0d, "Wireless Controller" }, { 0x0e, "Intelligent I/O Controller" }, { 0x0f, "Satellite Communication Controller" }, { 0x10, "Encryption/Decryption Controller" }, { 0x11, "Data Acquisition and Signal Processing Controller" }, { 0xff, "Device does not fit any defined class" }, }; static int num_pci_classes = sizeof(pci_classes) / sizeof(struct pci_class); #define NUM_CARDS 10 #define NUM_RESOURCES 7 /* holds the handle of a card at position = array index */ static int32_t handles[NUM_CARDS]; /* holds the interrupt handler addresses (see pci_hook_interrupt() and pci_unhook_interrupt()) of the PCI cards */ struct pci_interrupt { void (*handler)(void); int32_t parameter; struct pci_interrupt *next; }; #define MAX_INTERRUPTS (NUM_CARDS * 3) static struct pci_interrupt interrupts[MAX_INTERRUPTS]; /* holds the card's resource descriptors; filled in pci_device_config() */ static struct pci_rd resource_descriptors[NUM_CARDS][NUM_RESOURCES]; __attribute__((aligned(16))) void chip_errata_135(void) { /* * Errata type: Silicon * Affected component: PCI * Description: When core PCI transactions that involve writes to configuration or I/O space * are followed by a core line access to line addresses 0x4 and 0xC, core access * to the XL bus can hang. * Workaround: Prevent PCI configuration and I/O writes from being followed by the described * line access by the core by generating a known good XL bus transaction after * the PCI transaction. * Create a dummy function which is called immediately after each of the affected * transactions. There are three requirements for this dummy function. * 1. The function must be aligned to a 16-byte boundary. * 2. The function must contain a dummy write to a location on the XL bus, * preferably one with no side effects. * 3. The function must be longer than 32 bytes. If it is not, the function should * be padded with 16- or 48-bit TPF instructions placed after the end of * the function (after the RTS instruction) such that the length is longer * than 32 bytes. */ __asm__ __volatile( " .extern __MBAR\n\t" " clr.l d0\n\t" " move.l d0,__MBAR+0xF0C\n\t" /* Must use direct addressing. write to EPORT module */ /* xlbus -> slavebus -> eport, writing '0' to register */ /* has no effect */ " rts\n\t" " tpf.l #0x0\n\t" " tpf.l #0x0\n\t" " tpf.l #0x0\n\t" " tpf.l #0x0\n\t" " tpf.l #0x0\n\t" ::: "memory"); } __attribute__((interrupt)) void pci_arb_interrupt(void) { dbg("XLBARB slave error interrupt\r\n"); MCF_XLB_XARB_SR |= ~MCF_XLB_XARB_SR_SEA; } __attribute__((interrupt)) void xlb_pci_interrupt(void) { dbg("XLBPCI interrupt\r\n"); } __attribute__((interrupt)) void pci_interrupt(void) { dbg("PCI interrupt\r\n"); } static int32_t pci_get_interrupt_cause(int32_t *handles) { int32_t handle; while ((handle = *handles++) != -1) { uint32_t csr = swpl(pci_read_config_longword(handle, PCICSR)); if ((csr & (1 << 3)) && (csr & !(csr & (1 << 10)))) { /* device has interrupts enabled and has an active interrupt, so its probably ours */ return handle; } } dbg("%s: no interrupt cause found\r\n"); return -1; } static int32_t pci_call_interrupt_chain(int32_t handle, int32_t data) { return data; /* unmodified - means: not handled */ } #ifdef MACHINE_M5484LITE /* * This gets called from irq5 in exceptions.S * Once we arrive here, the SR has been set to disable interrupts and the gcc scratch registers have been saved */ void irq5_handler(void) { int32_t handle; int32_t value; int32_t newvalue; MCF_EPORT_EPFR |= (1 << 5); /* clear interrupt from edge port */ xprintf("IRQ5!\r\n"); if ((handle = pci_get_interrupt_cause(handles)) > 0) { newvalue = pci_call_interrupt_chain(handle, value); if (newvalue == value) { dbg("%s: interrupt not handled!\r\n"); } } } /* * This gets called from irq7 in exceptions.S * Once we arrive here, the SR has been set to disable interrupts and the gcc scratch registers have been saved */ void irq7_handler(void) { int32_t handle; int32_t value; int32_t newvalue; MCF_EPORT_EPFR |= (1 << 7); dbg("IRQ7!\r\n"); if ((handle = pci_get_interrupt_cause(handles)) > 0) { newvalue = pci_call_interrupt_chain(handle, value); if (newvalue == value) { dbg("%s: interrupt not handled!\r\n"); } } } #endif /* MACHINE_M548X */ /* * retrieve handle for i'th device */ static int handle2index(int32_t handle) { int i; for (i = 0; i < NUM_CARDS; i++) { if (handles[i] == handle) { return i; } } return -1; } /* * retrieve device class (in cleartext) for a PCI classcode */ static char *device_class(int classcode) { int i; for (i = 0; i < num_pci_classes; i++) { if (pci_classes[i].classcode == classcode) { return pci_classes[i].description; } } return "not found"; } /* * read an uint32_t from configuration space of card with handle and offset * * The returned value is in little endian format. */ uint32_t pci_read_config_longword(int32_t handle, int offset) { uint32_t value; /* initiate PCI configuration access to device */ MCF_PCI_PCICAR = MCF_PCI_PCICAR_E | /* enable configuration access special cycle */ MCF_PCI_PCICAR_BUSNUM(PCI_BUS_FROM_HANDLE(handle)) | MCF_PCI_PCICAR_DEVNUM(PCI_DEVICE_FROM_HANDLE(handle)) | /* device number, devices 0 - 9 are reserved */ MCF_PCI_PCICAR_FUNCNUM(PCI_FUNCTION_FROM_HANDLE(handle)) | /* function number */ MCF_PCI_PCICAR_DWORD(offset / 4); __asm__ __volatile__("nop" ::: "memory"); /* this is what the Linux BSP does */ pci_config_wait(); value = * (volatile uint32_t *) PCI_IO_OFFSET; /* access device */ __asm__ __volatile__("tpf" ::: "memory"); /* this is what the Linux BSP does */ /* finish PCI configuration access special cycle (allow regular PCI accesses) */ MCF_PCI_PCICAR &= ~MCF_PCI_PCICAR_E; return value; } uint16_t pci_read_config_word(int32_t handle, int offset) { uint16_t value; /* * initiate PCI configuration space access to device */ MCF_PCI_PCICAR = MCF_PCI_PCICAR_E | /* enable configuration space special cycle */ MCF_PCI_PCICAR_BUSNUM(PCI_BUS_FROM_HANDLE(handle)) | MCF_PCI_PCICAR_DEVNUM(PCI_DEVICE_FROM_HANDLE(handle)) | MCF_PCI_PCICAR_FUNCNUM(PCI_FUNCTION_FROM_HANDLE(handle)) | MCF_PCI_PCICAR_DWORD(offset / 4); __asm__ __volatile("nop" ::: "memory"); /* this is what Linux BSP does */ value = * (volatile uint16_t *) PCI_IO_OFFSET + (offset & 2); __asm__ __volatile("tpf" ::: "memory"); /* finish PCI configuration access special cycle */ MCF_PCI_PCICAR &= ~MCF_PCI_PCICAR_E; return value; } uint8_t pci_read_config_byte(int32_t handle, int offset) { uint8_t value; /* initiate PCI configuration access to device */ MCF_PCI_PCICAR = MCF_PCI_PCICAR_E | /* enable configuration access special cycle */ MCF_PCI_PCICAR_BUSNUM(PCI_BUS_FROM_HANDLE(handle)) | MCF_PCI_PCICAR_DEVNUM(PCI_DEVICE_FROM_HANDLE(handle)) | /* device number, devices 0 - 9 are reserved */ MCF_PCI_PCICAR_FUNCNUM(PCI_FUNCTION_FROM_HANDLE(handle)) | /* function number */ MCF_PCI_PCICAR_DWORD(offset / 4); __asm__ __volatile__("nop" ::: "memory"); value = * (volatile uint8_t *) (PCI_IO_OFFSET + (offset & 3)); __asm__ __volatile__("tpf" ::: "memory"); MCF_PCI_PCICAR &= ~MCF_PCI_PCICAR_E; return value; } /* * pci_write_config_longword() * * write an uint32_t value (must be in little endian format) to the configuration space of a PCI device */ int32_t pci_write_config_longword(int32_t handle, int offset, uint32_t value) { /* initiate PCI configuration access to device */ MCF_PCI_PCICAR = MCF_PCI_PCICAR_E | /* enable configuration access special cycle */ MCF_PCI_PCICAR_BUSNUM(PCI_BUS_FROM_HANDLE(handle)) | MCF_PCI_PCICAR_DEVNUM(PCI_DEVICE_FROM_HANDLE(handle)) | /* device number, devices 0 - 9 are reserved */ MCF_PCI_PCICAR_FUNCNUM(PCI_FUNCTION_FROM_HANDLE(handle)) | /* function number */ MCF_PCI_PCICAR_DWORD(offset / 4); __asm__ __volatile__("nop" ::: "memory"); * (volatile uint32_t *) PCI_IO_OFFSET = value; /* access device */ __asm__ __volatile__("tpf" ::: "memory"); /* finish configuration space access cycle */ MCF_PCI_PCICAR &= ~MCF_PCI_PCICAR_E; chip_errata_135(); return PCI_SUCCESSFUL; } /* * write a 16-bit value to config space. Must be in little-endian format */ int32_t pci_write_config_word(int32_t handle, int offset, uint16_t value) { /* initiate PCI configuration access to device */ MCF_PCI_PCICAR = MCF_PCI_PCICAR_E | /* enable configuration access special cycle */ MCF_PCI_PCICAR_BUSNUM(PCI_BUS_FROM_HANDLE(handle)) | MCF_PCI_PCICAR_DEVNUM(PCI_DEVICE_FROM_HANDLE(handle)) | MCF_PCI_PCICAR_FUNCNUM(PCI_FUNCTION_FROM_HANDLE(handle)) | MCF_PCI_PCICAR_DWORD(offset / 4); __asm__ __volatile__("tpf" ::: "memory"); * (volatile uint16_t *) (PCI_IO_OFFSET + (offset & 2)) = value; __asm__ __volatile__("tpf" ::: "memory"); /* finish configuration space access cycle */ MCF_PCI_PCICAR &= ~MCF_PCI_PCICAR_E; chip_errata_135(); return PCI_SUCCESSFUL; } /* * write a single byte to config space */ int32_t pci_write_config_byte(int32_t handle, int offset, uint8_t value) { MCF_PCI_PCICAR = MCF_PCI_PCICAR_E | MCF_PCI_PCICAR_BUSNUM(PCI_BUS_FROM_HANDLE(handle)) | MCF_PCI_PCICAR_DEVNUM(PCI_DEVICE_FROM_HANDLE(handle)) | MCF_PCI_PCICAR_FUNCNUM(PCI_FUNCTION_FROM_HANDLE(handle)) | MCF_PCI_PCICAR_DWORD(offset / 4); __asm__ __volatile__("tpf" ::: "memory"); * (volatile uint8_t *) (PCI_IO_OFFSET + (offset & 3)) = value; __asm__ __volatile__("tpf" ::: "memory"); /* finish configuration space access cycle */ MCF_PCI_PCICAR &= ~MCF_PCI_PCICAR_E; chip_errata_135(); return PCI_SUCCESSFUL; } /* * pci_get_resource * * get resource descriptor chain for handle */ struct pci_rd *pci_get_resource(int32_t handle) { int index = -1; struct pci_rd *ret; index = handle2index(handle); if (index == -1) ret = NULL; else ret = &resource_descriptors[index][0]; dbg("pci_get_resource: resource struct for handle %lx (index %d) is at %p\r\n", handle, index, ret); return ret; } /* * pci_find_device() * * find index'th device by device_id and vendor_id. Special case: vendor id -1 (0xffff) * matches all devices. You can search the whole bus by repeatedly calling this function */ int32_t pci_find_device(uint16_t device_id, uint16_t vendor_id, int index) { uint16_t bus; uint16_t device; uint16_t function = 0; uint16_t n = 0; int32_t handle; for (bus = 0; bus < 2; bus++) { for (device = 10; device < 31; device++) { uint32_t value; uint8_t htr; handle = PCI_HANDLE(bus, device, 0); value = pci_read_config_longword(handle, PCIIDR); if (value != 0xffffffff) /* we have a device at this position */ { if (vendor_id == 0xffff || (PCI_VENDOR_ID(value) == vendor_id && PCI_DEVICE_ID(value) == device_id)) { if (n == index) { return handle; } n++; } /* * There is a device at this position, but not the one we are looking for. * Check to see if it is a multi-function device. We need to look "behind" it * for the other functions in that case. */ if ((htr = pci_read_config_byte(handle, PCIHTR)) & 0x80) { /* yes, this is a multi-function device, look for more functions */ for (function = 1; function < 8; function++) { handle = PCI_HANDLE(bus, device, function); value = pci_read_config_longword(handle, PCIIDR); if (value != 0xFFFFFFFF) /* device found */ { if (vendor_id == 0xffff || (PCI_VENDOR_ID(value) == vendor_id && PCI_DEVICE_ID(value) == device_id)) { if (n == index) { return handle; } n++; } } } } } } } return PCI_DEVICE_NOT_FOUND; } /* * pci_find_classcode(uint32_t classcode, int index) * * Find the index'th pci device with a specific classcode. Bits 0-23 describe this classcode. * Bits 24 - 26 describe what needs to match: 24: prog interface, 25: PCI subclass, 26: PCI base class. * If no bits are set, there is a match for each device. */ int32_t pci_find_classcode(uint32_t classcode, int index) { uint16_t bus; uint16_t device; uint16_t function = 0; uint16_t n = 0; int32_t handle; for (bus = 0; bus < 2; bus++) { for (device = 10; device < 31; device++) { uint32_t value; uint8_t htr; handle = PCI_HANDLE(bus, device, 0); value = pci_read_config_longword(handle, PCIIDR); if (value != 0xffffffff) /* device found */ { value = pci_read_config_longword(handle, PCICCR); if ((classcode & (1 << 26) ? ((PCI_CLASS_CODE(value) == (classcode & 0xff))) : true) && (classcode & (1 << 25) ? ((PCI_SUBCLASS(value) == ((classcode & 0xff00) >> 8))) : true) && (classcode & (1 << 24) ? ((PCI_PROG_IF(value) == ((classcode & 0xff0000) >> 16))) : true)) { if (n == index) { return handle; } n++; } /* * there is a device at this position, but not the one we are looking for. * Check to see if it is a multi-function device. We need to look "behind" it * for the other functions in that case. */ if ((htr = pci_read_config_byte(handle, PCIHTR)) & 0x80) { /* yes, this is a multi-function device, look for more functions */ for (function = 1; function < 8; function++) { handle = PCI_HANDLE(bus, device, function); value = pci_read_config_longword(handle, PCIIDR); if (value != 0xffffffff) /* device found */ { value = pci_read_config_longword(handle, PCICCR); if ((classcode & (1 << 26) ? ((PCI_CLASS_CODE(value) == (classcode & 0xff))) : true) && (classcode & (1 << 25) ? ((PCI_SUBCLASS(value) == ((classcode & 0xff00) >> 8))) : true) && (classcode & (1 << 24) ? ((PCI_PROG_IF(value) == ((classcode & 0xff0000) >> 16))) : true)) { if (n == index) { return handle; } n++; } } } } } } } return PCI_DEVICE_NOT_FOUND; } int32_t pci_hook_interrupt(int32_t handle, void *handler, void *parameter) { /* FIXME: implement */ dbg("pci_hook_interrupt() still not implemented\r\n"); return PCI_SUCCESSFUL; } int32_t pci_unhook_interrupt(int32_t handle) { /* FIXME: implement */ dbg("pci_unhook_interrupt() still not implemented\r\n"); return PCI_SUCCESSFUL; } /* * Not implemented PCI_BIOS functions */ uint8_t pci_fast_read_config_byte(int32_t handle, uint16_t reg) { return PCI_FUNC_NOT_SUPPORTED; } uint16_t pci_fast_read_config_word(int32_t handle, uint16_t reg) { return PCI_FUNC_NOT_SUPPORTED; } uint32_t pci_fast_read_config_longword(int32_t handle, uint16_t reg) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_special_cycle(uint16_t bus, uint32_t data) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_get_routing(int32_t handle) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_set_interrupt(int32_t handle) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_get_card_used(int32_t handle, uint32_t *address) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_set_card_used(int32_t handle, uint32_t *callback) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_read_mem_byte(int32_t handle, uint32_t offset, uint8_t *address) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_read_mem_word(int32_t handle, uint32_t offset, uint16_t *address) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_read_mem_longword(int32_t handle, uint32_t offset, uint32_t *address) { return PCI_FUNC_NOT_SUPPORTED; } uint8_t pci_fast_read_mem_byte(int32_t handle, uint32_t offset) { return PCI_FUNC_NOT_SUPPORTED; } uint16_t pci_fast_read_mem_word(int32_t handle, uint32_t offset) { return PCI_FUNC_NOT_SUPPORTED; } uint32_t pci_fast_read_mem_longword(int32_t handle, uint32_t offset) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_write_mem_byte(int32_t handle, uint32_t offset, uint16_t val) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_write_mem_word(int32_t handle, uint32_t offset, uint16_t val) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_write_mem_longword(int32_t handle, uint32_t offset, uint32_t val) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_read_io_byte(int32_t handle, uint32_t offset, uint8_t *address) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_read_io_word(int32_t handle, uint32_t offset, uint16_t *address) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_read_io_longword(int32_t handle, uint32_t offset, uint32_t *address) { return PCI_FUNC_NOT_SUPPORTED; } uint8_t pci_fast_read_io_byte(int32_t handle, uint32_t offset) { return PCI_FUNC_NOT_SUPPORTED; } uint16_t pci_fast_read_io_word(int32_t handle, uint32_t offset) { return PCI_FUNC_NOT_SUPPORTED; } uint32_t pci_fast_read_io_longword(int32_t handle, uint32_t offset) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_write_io_byte(int32_t handle, uint32_t offset, uint16_t val) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_write_io_word(int32_t handle, uint32_t offset, uint16_t val) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_write_io_longword(int32_t handle, uint32_t offset, uint32_t val) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_get_machine_id(void) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_get_pagesize(void) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_virt_to_bus(int32_t handle, uint32_t address, PCI_CONV_ADR *pointer) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_bus_to_virt(int32_t handle, uint32_t address, PCI_CONV_ADR *pointer) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_virt_to_phys(uint32_t address, PCI_CONV_ADR *pointer) { return PCI_FUNC_NOT_SUPPORTED; } int32_t pci_phys_to_virt(uint32_t address, PCI_CONV_ADR *pointer) { return PCI_FUNC_NOT_SUPPORTED; } /* * pci_device_config() * * Map card resources, adjust BARs and fill resource descriptors */ static void pci_device_config(uint16_t bus, uint16_t device, uint16_t function) { uint32_t address; int32_t handle; int16_t index = - 1; uint8_t il; struct pci_rd *descriptors; int i; uint32_t value; static uint32_t mem_address = PCI_MEMORY_OFFSET; static uint32_t io_address = PCI_IO_OFFSET; uint16_t cr; /* determine pci handle from bus, device + function number */ handle = PCI_HANDLE(bus, device, function); /* find index into resource descriptor table for handle */ index = handle2index(handle); if (index == -1) { dbg("cannot find index for handle %d\r\n", handle); return; } /* * disable device */ cr = swpw(pci_read_config_word(handle, PCICSR)); cr &= ~3; /* disable device response to address */ pci_write_config_word(handle, PCICSR, swpw(cr)); int barnum = 0; descriptors = resource_descriptors[index]; for (i = 0; i < 6 * 4; i += 4) /* for all bars */ { /* * write all bits of BAR[i] */ pci_write_config_longword(handle, PCIBAR0 + i, 0xffffffff); /* * read back value to see which bits have been set */ address = swpl(pci_read_config_longword(handle, PCIBAR0 + i)); if (address) /* is bar in use? */ { /* * resource descriptor for this device */ struct pci_rd *rd = &descriptors[barnum]; dbg("%s: address = %08x\r\n", address); if (IS_PCI_MEM_BAR(address)) { /* adjust base address to card's alignment requirements */ int size = ~(address & 0xfffffff0) + 1; dbg("device 0x%x: BAR[%d] requests %d bytes of memory\r\n", handle, i / 4, size); /* calculate a valid map adress with alignment requirements */ address = (mem_address + size - 1) & ~(size - 1); /* write it to the BAR */ pci_write_config_longword(handle, PCIBAR0 + i, swpl(address)); /* read it back, just to be sure */ value = swpl(pci_read_config_longword(handle, PCIBAR0 + i)) & ~1; dbg("set PCIBAR%d on device 0x%02x to 0x%08x\r\n", i / 4, handle, value); /* fill resource descriptor */ rd->next = sizeof(struct pci_rd); rd->flags = 0 | FLG_32BIT | FLG_16BIT | FLG_8BIT | 2; /* little endian, lane swapped */ rd->start = address; rd->length = size; rd->offset = 0; rd->dmaoffset = 0; /* adjust memory adress for next turn */ mem_address += size; cr |= 2; /* index to next unused resource descriptor */ barnum++; } else if (IS_PCI_IO_BAR(address)) /* same as above for I/O resources */ { int size = ~(address & 0xfffffffc) + 1; dbg("device 0x%x: BAR[%d] requests %d bytes of I/O space\r\n", handle, i, size); address = (io_address + size - 1) & ~(size - 1); pci_write_config_longword(handle, PCIBAR0 + i, swpl(address | 1)); value = swpl(pci_read_config_longword(handle, PCIBAR0 + i)); dbg("set PCIBAR%d on device 0x%02x to 0x%08x\r\n", i / 4, handle, value); rd->next = sizeof(struct pci_rd); rd->flags = FLG_IO | FLG_8BIT | FLG_16BIT | FLG_32BIT | 2; rd->start = address; rd->offset = 0; rd->length = size; rd->dmaoffset = 0; io_address += size; cr |= 1; barnum++; } } } /* * check if we have an expansion ROM */ value = swpl(pci_read_config_longword(handle, PCIERBAR)); /* * write all bits of PCIERBAR */ pci_write_config_longword(handle, PCIERBAR, 0xffffffff); /* * read back value to see which bits have been set */ address = swpl(pci_read_config_longword(handle, PCIERBAR)); if (address & 1) { struct pci_rd *rd = &descriptors[barnum]; int size = ~(address & ~0x7ff); /* expansion ROM active and mapped */ /* calculate a valid map adress with alignment requirements */ address = (mem_address + size - 1) & ~(size - 1); /* write it to PCIERBAR and enable ROM */ pci_write_config_longword(handle, PCIERBAR, swpl(address | 1)); dbg("%s: set PCIERBAR on device 0x%02x to 0x%08x\r\n", handle, address | 1); /* read value back just to be sure */ dbg("%s: PCIERBAR = %p\r\n", swpl(pci_read_config_longword(handle, PCIERBAR))); rd->next = sizeof(struct pci_rd); rd->flags = FLG_ROM | FLG_8BIT | FLG_16BIT | FLG_32BIT | 2; rd->start = address; rd->offset = 0; rd->length = size; rd->dmaoffset = 0; mem_address += size; barnum++; } /* mark end of resource chain */ if (barnum > 0) descriptors[barnum - 1].flags |= FLG_LAST; /* check if device requests an interrupt */ il = pci_read_config_byte(handle, PCIIPR); dbg("device requests interrupts on interrupt pin %d\r\n", il); /* if so, register interrupts */ /* TODO: register interrupts here */ /* * enable device memory or I/O access */ pci_write_config_word(handle, PCICSR, swpw(cr)); } static void pci_bridge_config(uint16_t bus, uint16_t device, uint16_t function) { int32_t handle; if (function != 0) { dbg("trying to configure a multi-function bridge. Cancelled\r\n"); return; } handle = PCI_HANDLE(bus, device, function); pci_write_config_longword(handle, PCIBAR0, 0x40000000); pci_write_config_longword(handle, PCIBAR1, 0x0); pci_write_config_longword(handle, PCICSR, 0x146); } /* * scan PCI bus and display devices found. Create a handle for each device and call pci_device_config() for it */ void pci_scan(void) { int16_t handle; int16_t index = 0; xprintf("\r\nPCI bus scan...\r\n\r\n"); xprintf(" Bus| Dev|Func|Vndr|D-ID|Hndl|\r\n"); xprintf("----+----+----+----+----+----+\r\n"); handle = pci_find_device(0x0, 0xFFFF, index); while (handle > 0) { uint32_t value; value = pci_read_config_longword(handle, PCIIDR); xprintf(" %02x | %02x | %02x |%04x|%04x|%04x| %s (0x%02x)\r\n", PCI_BUS_FROM_HANDLE(handle), PCI_DEVICE_FROM_HANDLE(handle), PCI_FUNCTION_FROM_HANDLE(handle), PCI_VENDOR_ID(value), PCI_DEVICE_ID(value), handle, device_class(pci_read_config_byte(handle, PCICCR)), pci_read_config_byte(handle, PCICCR)); /* save handle to index value so that we'll be able to later find our resources */ handles[index] = handle; if (PCI_VENDOR_ID(value) != 0x1057 && PCI_DEVICE_ID(value) != 0x5806) /* do not configure bridge */ { /* configure memory and I/O for card */ pci_device_config(PCI_BUS_FROM_HANDLE(handle), PCI_DEVICE_FROM_HANDLE(handle), PCI_FUNCTION_FROM_HANDLE(handle)); } else { pci_bridge_config(PCI_BUS_FROM_HANDLE(handle), PCI_DEVICE_FROM_HANDLE(handle), PCI_FUNCTION_FROM_HANDLE(handle)); } handle = pci_find_device(0x0, 0xFFFF, ++index); } xprintf("\r\n...finished\r\n"); } /* start of PCI initialization code */ void init_eport(void) { /* configure IRQ1-7 pins on EPORT falling edge triggered */ MCF_EPORT_EPPAR = MCF_EPORT_EPPAR_EPPA7(MCF_EPORT_EPPAR_FALLING) | MCF_EPORT_EPPAR_EPPA6(MCF_EPORT_EPPAR_FALLING) | #if MACHINE_FIREBEE /* irq5 level triggered on FireBee */ MCF_EPORT_EPPAR_EPPA5(MCF_EPORT_EPPAR_LEVEL) | #elif MACHINE_M5484LITE MCF_EPORT_EPPAR_EPPA5(MCF_EPORT_EPPAR_FALLING) | #endif /* MACHINE_FIREBEE */ MCF_EPORT_EPPAR_EPPA4(MCF_EPORT_EPPAR_FALLING) | MCF_EPORT_EPPAR_EPPA3(MCF_EPORT_EPPAR_FALLING) | MCF_EPORT_EPPAR_EPPA2(MCF_EPORT_EPPAR_FALLING) | MCF_EPORT_EPPAR_EPPA1(MCF_EPORT_EPPAR_FALLING); MCF_EPORT_EPDDR = 0; /* clear data direction register. All pins as input */ MCF_EPORT_EPFR = -1; /* clear all EPORT interrupt flags */ MCF_EPORT_EPIER = 0xfe; /* enable all EPORT interrupts (for now) */ } void init_xlbus_arbiter(void) { uint8_t clock_ratio; /* setup XL bus arbiter */ clock_ratio = (MCF_PCI_PCIGSCR >> 24) & 0x07; if (clock_ratio == 4) { MCF_XLB_XARB_CFG = MCF_XLB_XARB_CFG_BA | MCF_XLB_XARB_CFG_DT | MCF_XLB_XARB_CFG_AT | MCF_XLB_XARB_CFG_PLDIS; } else { MCF_XLB_XARB_CFG = MCF_XLB_XARB_CFG_BA | MCF_XLB_XARB_CFG_DT | MCF_XLB_XARB_CFG_AT; } MCF_XLB_XARB_ADRTO = 0x1fffff; MCF_XLB_XARB_DATTO = 0x1fffff; MCF_XLB_XARB_BUSTO = 0xffffff; /* * set arbitration priorities for XL bus masters * * M0 = ColdFire core * M2 = Multichannel DMA * M3 = PCI target interface */ MCF_XLB_XARB_PRIEN = MCF_XLB_XARB_PRIEN_M0 | /* activate programmed priority for Coldfire core */ MCF_XLB_XARB_PRIEN_M2 | /* activate programmed priority for Multichannel DMA */ MCF_XLB_XARB_PRIEN_M3; /* activate programmed priority for PCI target interface */ MCF_XLB_XARB_PRI = MCF_XLB_XARB_PRI_M0P(7) | /* Coldfire core gets lowest */ MCF_XLB_XARB_PRI_M2P(5) | /* Multichannel DMA mid priority */ MCF_XLB_XARB_PRI_M3P(3); /* PCI target interface is highest priority */ } void init_pci(void) { int res; xprintf("initializing PCI bridge:\r\n"); (void) res; /* for now */ res = register_interrupt_handler(0, INT_SOURCE_PCIARB, 5, 5, pci_arb_interrupt); dbg("registered interrupt handler for PCI arbiter: %s\r\n", (res < 0 ? "failed" : "succeeded")); register_interrupt_handler(0, INT_SOURCE_XLBPCI, 5, 5, xlb_pci_interrupt); dbg("registered interrupt handler for XLB PCI: %s\r\n", (res < 0 ? "failed" : "succeeded")); init_eport(); init_xlbus_arbiter(); MCF_PCI_PCIGSCR = 1; /* reset PCI */ /* * setup the PCI arbiter */ MCF_PCIARB_PACR = MCF_PCIARB_PACR_INTMPRI /* internal master priority: high */ | MCF_PCIARB_PACR_EXTMPRI(0xf) /* external master priority: high */ | MCF_PCIARB_PACR_INTMINTEN /* enable "internal master broken" interrupt */ | MCF_PCIARB_PACR_EXTMINTEN(0x0f); /* enable "external master broken" interrupt */ #ifdef _NOT_USED_ /* since this is already done in sysinit.c */ #if MACHINE_FIREBEE //MCF_PAD_PAR_PCIBG = 0x3f; // FIXME: MiNT initialization hangs if this is enabled ??? //MCF_PAD_PAR_PCIBR = 0x3f; #elif MACHINE_M5484LITE MCF_PAD_PAR_PCIBG = 0x3ff; /* enable all PCI bus grant and bus requests on the LITE board */ MCF_PAD_PAR_PCIBR = 0x3ff; #endif /* MACHINE_FIREBEE */ #endif /* _NOT_USED_ */ MCF_PCI_PCISCR = MCF_PCI_PCISCR_M | /* memory access control enabled */ MCF_PCI_PCISCR_B | /* bus master enabled */ MCF_PCI_PCISCR_M | /* mem access enable */ MCF_PCI_PCISCR_MA | /* clear master abort error */ MCF_PCI_PCISCR_MW; /* memory write and invalidate enabled */ /* Setup burst parameters */ MCF_PCI_PCICR1 = MCF_PCI_PCICR1_CACHELINESIZE(8) | MCF_PCI_PCICR1_LATTIMER(0xff); /* TODO: test increased latency timer */ #ifdef _NOT_USED_ MCF_PCI_PCICR2 = MCF_PCI_PCICR2_MINGNT(1) | MCF_PCI_PCICR2_MAXLAT(32); #endif /* _NOT_USED_ */ MCF_PCI_PCICR2 = 0; /* this is what Linux does */ /* error signaling */ #ifdef NOT_USED MCF_PCI_PCIICR = MCF_PCI_PCIICR_TAE | /* target abort enable */ MCF_PCI_PCIICR_IAE; /* initiator abort enable */ #endif /* NOT_USED */ MCF_PCI_PCIICR = 0; /* this is what Linux does */ MCF_PCI_PCIGSCR |= MCF_PCI_PCIGSCR_SEE; /* system error interrupt enable */ /* Configure Initiator Windows */ /* initiator window 0 base / translation adress register */ MCF_PCI_PCIIW0BTAR = (PCI_MEMORY_OFFSET | (((PCI_MEMORY_SIZE - 1) >> 8) & 0xffff0000)) | ((PCI_MEMORY_OFFSET >> 16) & 0xff00); dbg("PCIIW0BTAR=0x%08x\r\n", MCF_PCI_PCIIW0BTAR); /* initiator window 1 base / translation adress register */ MCF_PCI_PCIIW1BTAR = (PCI_IO_OFFSET | ((PCI_IO_SIZE - 1) >> 8)) & 0xffff0000; /* initiator window 2 base / translation address register */ MCF_PCI_PCIIW2BTAR = 0L; /* not used */ /* initiator window configuration register */ MCF_PCI_PCIIWCR = MCF_PCI_PCIIWCR_WINCTRL0_MEMRDLINE | MCF_PCI_PCIIWCR_WINCTRL1_IO | MCF_PCI_PCIIWCR_WINCTRL0_E | MCF_PCI_PCIIWCR_WINCTRL1_E; /* * Initialize target control register. * Used when an external bus master accesses the Coldfire PCI as target */ MCF_PCI_PCIBAR0 = 0x40000000; /* 256 kB window */ MCF_PCI_PCITBATR0 = (uint32_t) &_MBAR[0] | MCF_PCI_PCITBATR0_EN; /* target base address translation register 0 */ MCF_PCI_PCIBAR1 = 0; /* 1GB window */ MCF_PCI_PCITBATR1 = MCF_PCI_PCITBATR1_EN; /* reset PCI devices */ MCF_PCI_PCIGSCR &= ~MCF_PCI_PCIGSCR_PR; do {;} while (MCF_PCI_PCIGSCR & MCF_PCI_PCIGSCR_PR); /* wait until reset finished */ xprintf("finished\r\n"); /* initialize/clear resource descriptor table */ memset(&resource_descriptors, 0, NUM_CARDS * NUM_RESOURCES * sizeof(struct pci_rd)); /* initialize/clear handles array */ memset(handles, 0, NUM_CARDS * sizeof(int32_t)); /* initialize/clear interrupts array */ memset(interrupts, 0, MAX_INTERRUPTS * sizeof(struct pci_interrupt)); /* * give devices a chance to come up befor attempting to configure them, * necessary to properly detect the FireBee USB chip */ wait(400000); /* * do normal initialization */ pci_scan(); } #ifdef DEBUG_PCI void pci_print_device_abilities(int32_t handle) { uint16_t value; uint16_t saved_value; saved_value = pci_read_config_word(handle, PCICSR); pci_write_config_word(handle, PCICSR, 0xffff); value = swpw(pci_read_config_word(handle, PCICSR)); dbg("IO: %1d MEM: %1d MSTR:%1d SPCC: %1d MEMW: %1d VGAS: %1d PERR: %1d STEP: %1d SERR: %1d FBTB: %1d\r\n", value & PCICSR_IO ? 1 : 0, value & PCICSR_MEMORY ? 1 : 0, value & PCICSR_MASTER ? 1 : 0, value & PCICSR_SPECIAL ? 1 : 0, value & PCICSR_MEMWI ? 1 : 0, value & PCICSR_VGA_SNOOP ? 1 : 0, value & PCICSR_PERR ? 1 : 0, value & PCICSR_STEPPING ? 1 : 0, value & PCICSR_SERR ? 1 : 0, value & PCICSR_FAST_BTOB_E ? 1 : 0); pci_write_config_word(handle, PCICSR, saved_value); } void pci_print_device_config(int32_t handle) { uint16_t value; value = swpw(pci_read_config_word(handle, PCICSR + 2)); dbg("66M: %1d UDF: %1d FB2B:%1d PERR: %1d TABR: %1d DABR: %1d SERR: %1d PPER: %1d\r\n", value & PCICSR_66MHZ ? 1 : 0, value & PCICSR_UDF ? 1 : 0, value & PCICSR_FAST_BTOB ? 1 : 0, value & PCICSR_DPARITY_ERROR ? 1 : 0, value & PCICSR_T_ABORT_S ? 1 : 0, value & PCICSR_T_ABORT_R ? 1 : 0, value & PCICSR_M_ABORT_R ? 1 : 0, value & PCICSR_S_ERROR_S ? 1 : 0, value & PCICSR_PARITY_ERR ? 1 : 0); } #endif /* DEBUG_PCI */