#ifndef MOD_DEVICETABLE_H #define MOD_DEVICETABLE_H #define PCI_ANY_ID (~0) struct pci_device_id { unsigned long vendor, device; /* Vendor and device ID or PCI_ANY_ID*/ unsigned long subvendor, subdevice; /* Subsystem ID's or PCI_ANY_ID */ unsigned long class, class_mask; /* (class,subclass,prog-if) triplet */ unsigned long driver_data; /* Data private to the driver */ }; #define IEEE1394_MATCH_VENDOR_ID 0x0001 #define IEEE1394_MATCH_MODEL_ID 0x0002 #define IEEE1394_MATCH_SPECIFIER_ID 0x0004 #define IEEE1394_MATCH_VERSION 0x0008 struct ieee1394_device_id { unsigned long match_flags; unsigned long vendor_id; unsigned long model_id; unsigned long specifier_id; unsigned long version; unsigned long driver_data; }; /* * Device table entry for "new style" table-driven USB drivers. * User mode code can read these tables to choose which modules to load. * Declare the table as a MODULE_DEVICE_TABLE. * * A probe() parameter will point to a matching entry from this table. * Use the driver_info field for each match to hold information tied * to that match: device quirks, etc. * * Terminate the driver's table with an all-zeroes entry. * Use the flag values to control which fields are compared. */ /** * struct usb_device_id - identifies USB devices for probing and hotplugging * @match_flags: Bit mask controlling of the other fields are used to match * against new devices. Any field except for driver_info may be used, * although some only make sense in conjunction with other fields. * This is usually set by a USB_DEVICE_*() macro, which sets all * other fields in this structure except for driver_info. * @idVendor: USB vendor ID for a device; numbers are assigned * by the USB forum to its members. * @idProduct: Vendor-assigned product ID. * @bcdDevice_lo: Low end of range of vendor-assigned product version numbers. * This is also used to identify individual product versions, for * a range consisting of a single device. * @bcdDevice_hi: High end of version number range. The range of product * versions is inclusive. * @bDeviceClass: Class of device; numbers are assigned * by the USB forum. Products may choose to implement classes, * or be vendor-specific. Device classes specify behavior of all * the interfaces on a devices. * @bDeviceSubClass: Subclass of device; associated with bDeviceClass. * @bDeviceProtocol: Protocol of device; associated with bDeviceClass. * @bInterfaceClass: Class of interface; numbers are assigned * by the USB forum. Products may choose to implement classes, * or be vendor-specific. Interface classes specify behavior only * of a given interface; other interfaces may support other classes. * @bInterfaceSubClass: Subclass of interface; associated with bInterfaceClass. * @bInterfaceProtocol: Protocol of interface; associated with bInterfaceClass. * @driver_info: Holds information used by the driver. Usually it holds * a pointer to a descriptor understood by the driver, or perhaps * device flags. * * In most cases, drivers will create a table of device IDs by using * USB_DEVICE(), or similar macros designed for that purpose. * They will then export it to userspace using MODULE_DEVICE_TABLE(), * and provide it to the USB core through their usb_driver structure. * * See the usb_match_id() function for information about how matches are * performed. Briefly, you will normally use one of several macros to help * construct these entries. Each entry you provide will either identify * one or more specific products, or will identify a class of products * which have agreed to behave the same. You should put the more specific * matches towards the beginning of your table, so that driver_info can * record quirks of specific products. */ struct usb_device_id { /* which fields to match against? */ unsigned short match_flags; /* Used for product specific matches; range is inclusive */ unsigned short idVendor; unsigned short idProduct; unsigned short bcdDevice_lo; unsigned short bcdDevice_hi; /* Used for device class matches */ unsigned char bDeviceClass; unsigned char bDeviceSubClass; unsigned char bDeviceProtocol; /* Used for interface class matches */ unsigned char bInterfaceClass; unsigned char bInterfaceSubClass; unsigned char bInterfaceProtocol; /* not matched against */ unsigned long driver_info; }; /* Some useful macros to use to create struct usb_device_id */ #define USB_DEVICE_ID_MATCH_VENDOR 0x0001 #define USB_DEVICE_ID_MATCH_PRODUCT 0x0002 #define USB_DEVICE_ID_MATCH_DEV_LO 0x0004 #define USB_DEVICE_ID_MATCH_DEV_HI 0x0008 #define USB_DEVICE_ID_MATCH_DEV_CLASS 0x0010 #define USB_DEVICE_ID_MATCH_DEV_SUBCLASS 0x0020 #define USB_DEVICE_ID_MATCH_DEV_PROTOCOL 0x0040 #define USB_DEVICE_ID_MATCH_INT_CLASS 0x0080 #define USB_DEVICE_ID_MATCH_INT_SUBCLASS 0x0100 #define USB_DEVICE_ID_MATCH_INT_PROTOCOL 0x0200 /* s390 CCW devices */ struct ccw_device_id { unsigned short match_flags; /* which fields to match against */ unsigned short cu_type; /* control unit type */ unsigned short dev_type; /* device type */ unsigned char cu_model; /* control unit model */ unsigned char dev_model; /* device model */ unsigned long driver_info; }; #define CCW_DEVICE_ID_MATCH_CU_TYPE 0x01 #define CCW_DEVICE_ID_MATCH_CU_MODEL 0x02 #define CCW_DEVICE_ID_MATCH_DEVICE_TYPE 0x04 #define CCW_DEVICE_ID_MATCH_DEVICE_MODEL 0x08 #define PNP_ID_LEN 8 #define PNP_MAX_DEVICES 8 struct pnp_device_id { unsigned char id[PNP_ID_LEN]; unsigned long driver_data; }; struct pnp_card_device_id { unsigned char id[PNP_ID_LEN]; unsigned long driver_data; struct { unsigned char id[PNP_ID_LEN]; } devs[PNP_MAX_DEVICES]; }; #define SERIO_ANY 0xff struct serio_device_id { unsigned char type; unsigned char extra; unsigned char id; unsigned char proto; }; #endif /* MOD_DEVICETABLE_H */