released 0.8.7 (new MMU layout, m5484LITE board working again)

This commit is contained in:
Markus Fröschle
2015-01-24 10:24:33 +00:00
parent f72b551170
commit ce6e8d58fd
284 changed files with 126529 additions and 0 deletions

187
BaS_gcc/spi/dspi.c Normal file
View File

@@ -0,0 +1,187 @@
/*
* dspi.c
*
* Coldfire DSPI (DMA Serial Peripherial Interface).
*
* On the Coldfire, the DSPI interface supports 4 SPI output channels and one input channel.
* On the Firebee, DSPICS5 is connected to the SD card slot.
*
* This file is part of BaS_gcc.
*
* BaS_gcc is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* BaS_gcc is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with BaS_gcc. If not, see <http://www.gnu.org/licenses/>.
*
* Created on: 16.10.2013
* Author: mfro
*/
#include <bas_types.h>
#include <MCF5475.h>
struct baudrate
{
int br_divisor;
int pbr_divisor;
int divider;
};
static const int system_clock = 132000000; /* System clock in Hz */
struct baudrate baudrates[] =
{
{ 0b0000, 0b00, 4 },
{ 0b0000, 0b01, 6 },
{ 0b0001, 0b00, 8 },
{ 0b0000, 0b10, 10 },
{ 0b0001, 0b01, 12 },
{ 0b0010, 0b00, 12 },
{ 0b0000, 0b11, 14 },
{ 0b0011, 0b00, 16 },
{ 0b0010, 0b01, 18 },
{ 0b0001, 0b10, 20 },
{ 0b0011, 0b01, 24 },
{ 0b0001, 0b11, 28 },
{ 0b0010, 0b10, 30 },
{ 0b0100, 0b00, 32 },
{ 0b0011, 0b10, 40 },
{ 0b0010, 0b11, 42 },
{ 0b0100, 0b01, 48 },
{ 0b0011, 0b11, 56 },
{ 0b0101, 0b00, 64 },
{ 0b0100, 0b10, 80 },
{ 0b0101, 0b01, 96 },
{ 0b0100, 0b11, 112 },
{ 0b0110, 0b00, 128 },
{ 0b0101, 0b10, 160 },
{ 0b0110, 0b01, 192 },
{ 0b0101, 0b11, 224 },
{ 0b0111, 0b00, 256 },
{ 0b0110, 0b10, 320 },
{ 0b0111, 0b01, 384 },
{ 0b0110, 0b11, 448 },
{ 0b1000, 0b00, 512 },
{ 0b0111, 0b10, 640 },
{ 0b1000, 0b01, 768 },
{ 0b0111, 0b11, 896 },
{ 0b1001, 0b00, 1024 },
{ 0b1000, 0b10, 1280 },
{ 0b1001, 0b01, 1536 },
{ 0b1000, 0b11, 1792 },
{ 0b1010, 0b00, 2048 },
{ 0b1001, 0b10, 2560 },
{ 0b1010, 0b01, 3072 },
{ 0b1001, 0b11, 3584 },
{ 0b1011, 0b00, 4096 },
{ 0b1010, 0b10, 5120 },
{ 0b1011, 0b01, 6144 },
{ 0b1010, 0b11, 7168 },
{ 0b1100, 0b00, 8192 },
{ 0b1011, 0b10, 10240 },
{ 0b1100, 0b01, 12288 },
{ 0b1011, 0b11, 14336 },
{ 0b1101, 0b00, 16384 },
{ 0b1100, 0b10, 20480 },
{ 0b1101, 0b01, 24576 },
{ 0b1100, 0b11, 28672 },
{ 0b1110, 0b00, 32768 },
{ 0b1101, 0b10, 40960 },
{ 0b1110, 0b01, 49152 },
{ 0b1101, 0b11, 57344 },
{ 0b1111, 0b00, 65536 },
{ 0b1110, 0b10, 81920 },
{ 0b1111, 0b01, 98304 },
{ 0b1110, 0b11, 114688 },
{ 0b1111, 0b10, 163840 },
{ 0b1111, 0b11, 229376 },
};
/*
* set the dspi clock to rate or - if no exact match possible - to the next lower possible baudrate
*/
int dspi_set_baudrate(int rate)
{
int set_baudrate = 0;
int br;
int pbr;
int i;
for (i = sizeof(baudrates) / sizeof(struct baudrate) - 1; i >= 0; i--)
{
set_baudrate = system_clock / baudrates[i].divider;
if (set_baudrate > rate)
{
continue;
}
br = baudrates[i].br_divisor;
pbr = baudrates[i].pbr_divisor;
/* TODO: set br and pbr here */
return set_baudrate;
}
return 0;
}
static uint32_t dspi_fifo_val = MCF_DSPI_DTFR_CTCNT;
/*
* Exchange a byte. If last is false (0), there will be more bytes to follow (EOQ flag in DTFR left unset)
*/
uint8_t dspi_xchg_byte(int device, uint8_t byte, int last)
{
uint32_t fifo;
uint8_t res;
fifo = dspi_fifo_val | (byte & 0xff); /* transfer bytes only */
fifo |= (last ? MCF_DSPI_DTFR_EOQ : 0); /* mark last transfer */
MCF_DSPI_DTFR = fifo;
while (! (MCF_DSPI_DSR & MCF_DSPI_DSR_TCF)); /* wait until DSPI transfer complete */
fifo = MCF_DSPI_DRFR; /* read transferred word */
MCF_DSPI_DSR = -1; /* clear DSPI status register */
res = fifo & 0xff;
return res;
}
/* Receive multiple byte with 0xff as output
*
* buff: pointer to data buffer
* btr: number of bytes to receive (16, 64 or 512)
*/
static void dspi_rcv_byte_multi(int device, uint8_t *buff, uint32_t count)
{
int i;
for (i = 0; i < count - 1; i++)
*buff++ = dspi_xchg_byte(device, 0xff, 0);
*buff++ = dspi_xchg_byte(device, 0xff, 1); /* transfer last byte and stop transmission */
}
/* Send multiple byte, discard input
*
* buff: pointer to data
* btx: number of bytes to send
*/
static void dspi_xmt_byte_multi(int device, const uint8_t *buff, uint32_t btx)
{
int i;
for (i = 0; i < btx - 1; i++)
dspi_xchg_byte(device, *buff++, 0);
dspi_xchg_byte(device, *buff++, 1); /* transfer last byte and indicate end of transmission */
}

814
BaS_gcc/spi/mmc.c Normal file
View File

@@ -0,0 +1,814 @@
#include <bas_types.h>
#include <sd_card.h>
#include <bas_printf.h>
#include <sysinit.h>
#include <wait.h>
#include <MCF5475.h>
/*
* Firebee: MMCv3/SDv1/SDv2 (SPI mode) control module
*
*
* Copyright (C) 2011, ChaN, all right reserved.
*
* This software is a free software and there is NO WARRANTY.
* No restriction on use. You can use, modify and redistribute it for
* personal, non-profit or commercial products UNDER YOUR RESPONSIBILITY.
* Redistributions of source code must retain the above copyright notice.
*
*/
/* Copyright (C) 2012, mfro, all rights reserved. */
// #define DEBUG_MMC
#ifdef DEBUG_MMC
#define debug_printf(format, arg...) do { xprintf("DEBUG: " format "\r\n", ##arg); } while (0)
#else
#define debug_printf(format, arg...) do { ; } while (0)
#endif /* DEBUG_MMC */
#define CS_LOW() { dspi_fifo_val |= MCF_DSPI_DTFR_CS5; }
#define CS_HIGH() { dspi_fifo_val &= ~MCF_DSPI_DTFR_CS5; }
/*
* DCTAR_PBR (baud rate prescaler) and DCTAR_BR (baud rate scaler) together determine the SPI baud rate. The forumula is
*
* baud rate = system clock / DCTAR_PBR * 1 / DCTAR_BR.
*
* System clock for the Firebee is 133 MHZ.
*
* The SPICLK_FAST() example calculates as follows: baud rate = 133 MHz / 3 * 1 / 2 = 22,16 MHz
* SPICLK_SLOW() should be between 100 and 400 kHz: 133 MHz / 1 * 1 / 1024 = 129 kHz
*/
#define SPICLK_FAST() { MCF_DSPI_DCTAR0 = MCF_DSPI_DCTAR_TRSZ(0b0111) | /* transfer size = 8 bit */ \
MCF_DSPI_DCTAR_PCSSCK(0b01) | /* 3 clock DSPICS to DSPISCK delay prescaler */ \
MCF_DSPI_DCTAR_PASC_3CLK | /* 3 clock DSPISCK to DSPICS negation prescaler */ \
MCF_DSPI_DCTAR_PDT_3CLK | /* 3 clock delay between DSPICS assertions prescaler */ \
MCF_DSPI_DCTAR_PBR_1CLK | /* 3 clock baudrate prescaler */ \
MCF_DSPI_DCTAR_CSSCK(1) | /* delay scaler * 4 */\
MCF_DSPI_DCTAR_ASC(0b0001) | /* 2 */ \
MCF_DSPI_DCTAR_DT(0b0010) | /* 2 */ \
MCF_DSPI_DCTAR_BR(0b0001); } /* clock / 2 */
#define SPICLK_SLOW() { \
MCF_DSPI_DCTAR0 = MCF_DSPI_DCTAR_TRSZ(0b111) | /* transfer size = 8 bit */ \
MCF_DSPI_DCTAR_PCSSCK(0b01) | /* 3 clock DSPICS to DSPISCK delay prescaler */ \
MCF_DSPI_DCTAR_PASC_3CLK | /* 3 clock DSPISCK to DSPICS negation prescaler */ \
MCF_DSPI_DCTAR_PDT_3CLK | /* 3 clock delay between DSPICS assertions prescaler */ \
MCF_DSPI_DCTAR_PBR_3CLK | /* 1 clock baudrate prescaler */ \
MCF_DSPI_DCTAR_CSSCK(8) | /* delay scaler * 512 */\
MCF_DSPI_DCTAR_ASC(8) | /* 2 */ \
MCF_DSPI_DCTAR_DT(9) | /* 2 */ \
MCF_DSPI_DCTAR_BR(7); \
}
/*--------------------------------------------------------------------------
Module Private Functions
---------------------------------------------------------------------------*/
#include "diskio.h"
/* MMC/SD command */
#define CMD0 (0) /* GO_IDLE_STATE */
#define CMD1 (1) /* SEND_OP_COND (MMC) */
#define ACMD41 (0x80+41) /* SEND_OP_COND (SDC) */
#define CMD8 (8) /* SEND_IF_COND */
#define CMD9 (9) /* SEND_CSD */
#define CMD10 (10) /* SEND_CID */
#define CMD12 (12) /* STOP_TRANSMISSION */
#define ACMD13 (0x80+13) /* SD_STATUS (SDC) */
#define CMD16 (16) /* SET_BLOCKLEN */
#define CMD17 (17) /* READ_SINGLE_BLOCK */
#define CMD18 (18) /* READ_MULTIPLE_BLOCK */
#define CMD23 (23) /* SET_BLOCK_COUNT (MMC) */
#define ACMD23 (0x80+23) /* SET_WR_BLK_ERASE_COUNT (SDC) */
#define CMD24 (24) /* WRITE_BLOCK */
#define CMD25 (25) /* WRITE_MULTIPLE_BLOCK */
#define CMD32 (32) /* ERASE_ER_BLK_START */
#define CMD33 (33) /* ERASE_ER_BLK_END */
#define CMD38 (38) /* ERASE */
#define CMD55 (55) /* APP_CMD */
#define CMD58 (58) /* READ_OCR */
static volatile DSTATUS Stat = 0 /* STA_NOINIT */; /* Physical drive status */
static uint8_t CardType; /* Card type flags */
static uint32_t dspi_fifo_val = MCF_DSPI_DTFR_CTCNT;
/*-----------------------------------------------------------------------*/
/* Send/Receive data to the MMC (Platform dependent) */
/*-----------------------------------------------------------------------*/
/*
* Exchange a byte. If last is false (0), there will be more bytes to follow (EOQ flag in DTFR left unset)
*/
static uint8_t xchg_spi(uint8_t byte, int last)
{
uint32_t fifo;
uint8_t res;
fifo = dspi_fifo_val | (byte & 0xff); /* transfer bytes only */
//fifo |= (last ? MCF_DSPI_DTFR_EOQ : 0); /* mark last transfer */
MCF_DSPI_DTFR = fifo;
while (! (MCF_DSPI_DSR & MCF_DSPI_DSR_TCF)); /* wait until DSPI transfer complete */
fifo = MCF_DSPI_DRFR; /* read transferred word */
MCF_DSPI_DSR = -1; /* clear DSPI status register */
res = fifo & 0xff;
return res;
}
/* Receive multiple byte
*
* buff: pointer to data buffer
* btr: number of bytes to receive (16, 64 or 512)
*/
static void rcvr_spi_multi(uint8_t *buff, uint32_t count)
{
int i;
for (i = 0; i < count - 1; i++)
*buff++ = xchg_spi(0xff, 0);
*buff++ = xchg_spi(0xff, 1); /* transfer last byte and stop transmission */
}
#if _USE_WRITE
/* Send multiple byte
*
* buff: pointer to data
* btx: number of bytes to send
*/
static void xmit_spi_multi(const uint8_t *buff, uint32_t btx)
{
int i;
for (i = 0; i < btx - 1; i++)
xchg_spi(*buff++, 0);
xchg_spi(*buff++, 1); /* transfer last byte and indicate end of transmission */
}
#endif
static bool card_ready(void)
{
uint8_t d;
d = xchg_spi(0xff, 1);
return (d == 0xff);
}
/*
* Wait for card ready
*
* wt: timeout in ns
* returns 1: ready, 0: timeout
*/
static int wait_ready(uint32_t wt)
{
return waitfor(wt * 1000, card_ready);
}
/*
* Deselect card and release SPI
*/
static void deselect(void)
{
CS_HIGH();
wait_ready(50); /* Dummy clock (force DO hi-z for multiple slave SPI) */
}
/*
* Select card and wait for ready
*/
static int select(void) /* 1:OK, 0:Timeout */
{
CS_LOW();
if (wait_ready(500))
return 1; /* OK */
deselect();
return 0; /* Timeout */
}
/*
* Control SPI module (Platform dependent)
*/
static void power_on(void) /* Enable SSP module */
{
MCF_PAD_PAR_DSPI = 0x1fff; /* configure all DSPI GPIO pins for DSPI usage */
dspi_fifo_val = MCF_DSPI_DTFR_CTCNT;
/*
* initialize DSPI module configuration register
*/
MCF_DSPI_DMCR = MCF_DSPI_DMCR_MSTR | /* FireBee is DSPI master*/
MCF_DSPI_DMCR_CSIS5 | /* CS5 inactive state high */
MCF_DSPI_DMCR_CSIS3 | /* CS3 inactive state high */
MCF_DSPI_DMCR_CSIS2 | /* CS2 inactive state high */
MCF_DSPI_DMCR_CSIS0 | /* CS0 inactive state high */
MCF_DSPI_DMCR_DTXF | /* disable transmit FIFO */
MCF_DSPI_DMCR_DRXF | /* disable receive FIFO */
MCF_DSPI_DMCR_CTXF | /* clear transmit FIFO */
MCF_DSPI_DMCR_CRXF; /* clear receive FIFO */
/* initialize DSPI clock and transfer attributes register 0 */
SPICLK_SLOW();
CS_HIGH(); /* Set CS# high */
/* card should now be initialized as MMC */
wait(10 * 1000); /* 10ms */
}
static void power_off (void) /* Disable SPI function */
{
select(); /* Wait for card ready */
deselect();
}
/*-----------------------------------------------------------------------*/
/* Receive a data packet from the MMC */
/*-----------------------------------------------------------------------*/
static int rcvr_datablock(uint8_t *buff, uint32_t btr)
{
uint8_t token;
int32_t target = MCF_SLT_SCNT(0) - (200L * 1000L * 132L);
do { /* Wait for DataStart token in timeout of 200ms */
token = xchg_spi(0xFF, 0);
} while ((token == 0xFF) && MCF_SLT_SCNT(0) - target > 0);
if (token == 0xff)
{
debug_printf("no data start token received after 2000ms in rcvr_datablock\r\n");
return 0;
}
if (token != 0xFE)
{
debug_printf("invalid token (%x) in rcvr_datablock()!\r\n", token);
return 0; /* Function fails if invalid DataStart token or timeout */
}
rcvr_spi_multi(buff, btr); /* Store trailing data to the buffer */
xchg_spi(0xFF, 1);
xchg_spi(0xFF, 1); /* Discard CRC */
return 1; /* Function succeeded */
}
/*-----------------------------------------------------------------------*/
/* Send a data packet to the MMC */
/*-----------------------------------------------------------------------*/
#if _USE_WRITE
static int xmit_datablock(const uint8_t *buff, uint8_t token)
{
uint8_t resp;
if (!wait_ready(500))
{
debug_printf("card did not respond ready after 500 ms in xmit_datablock()\r\n");
return 0; /* Wait for card ready */
}
xchg_spi(token, 1); /* Send token */
if (token != 0xFD) { /* Send data if token is other than StopTran */
xmit_spi_multi(buff, 512); /* Data */
xchg_spi(0xFF, 1);
xchg_spi(0xFF, 1); /* Dummy CRC */
resp = xchg_spi(0xFF, 1); /* Receive data resp */
if ((resp & 0x1F) != 0x05) /* Function fails if the data packet was not accepted */
{
debug_printf("card did not accept data packet in xmit_datablock() (resp = %x)\r\n", resp & 0x1F);
return 0;
}
}
wait_ready(30);
return 1;
}
#endif
/*-----------------------------------------------------------------------*/
/* Send a command packet to the MMC */
/*-----------------------------------------------------------------------*/
static uint8_t send_cmd(uint8_t cmd, uint32_t arg)
{
int n;
int res;
if (cmd & 0x80)
{ /* Send a CMD55 prior to ACMD<n> */
cmd &= 0x7F;
res = send_cmd(CMD55, 0);
if (res > 1)
return res;
}
/* Select card */
deselect();
if (!select())
{
debug_printf("card could not be selected in send_cmd()\r\n");
return 0xFF;
}
if (!wait_ready(500))
{
debug_printf("card did not respond ready after 5000 ms in send_cmd()\r\n");
return 0xff; /* Wait for card ready */
}
/* Send command packet */
xchg_spi(0x40 | cmd, 0); /* Start + command index */
xchg_spi((uint8_t)(arg >> 24), 0); /* Argument[31..24] */
xchg_spi((uint8_t)(arg >> 16), 0); /* Argument[23..16] */
xchg_spi((uint8_t)(arg >> 8), 0); /* Argument[15..8] */
xchg_spi((uint8_t)arg, 1); /* Argument[7..0] */
n = 0x01; /* Dummy CRC + Stop */
if (cmd == CMD0)
n = 0x95; /* Valid CRC for CMD0(0) */
if (cmd == CMD8)
n = 0x87; /* Valid CRC for CMD8(0x1AA) */
xchg_spi(n, 0);
/* Receive command resp */
if (cmd == CMD12)
{
xchg_spi(0xFF, 0); /* Discard following one byte when CMD12 */
}
n = 1000; /* Wait for response (1000 bytes max) */
do
res = xchg_spi(0xFF, 1);
while ((res & 0x80) && --n);
return res; /* Return received response */
}
/*--------------------------------------------------------------------------
Public Functions
---------------------------------------------------------------------------*/
/*
* Initialize disk drive
*
* drv: physical drive number (0)
*/
DSTATUS disk_initialize(uint8_t drv)
{
uint8_t n, cmd, card_type, ocr[4];
if (drv)
return STA_NOINIT; /* Supports only drive 0 */
power_on(); /* Initialize SPI */
if (Stat & STA_NODISK)
return Stat; /* Is card existing in the socket? */
SPICLK_SLOW();
for (n = 10; n; n--)
xchg_spi(0xFF, 1); /* Send 80 dummy clocks */
card_type = 0;
if (send_cmd(CMD0, 0) == 1)
{
/* Put the card SPI/Idle state */
int32_t target;
if (send_cmd(CMD8, 0x1AA) == 1) { /* SDv2? */
for (n = 0; n < 4; n++)
ocr[n] = xchg_spi(0xFF, 1); /* Get 32 bit return value of R7 resp */
if (ocr[2] == 0x01 && ocr[3] == 0xAA)
{
int res;
/* Is the card supports vcc of 2.7-3.6V? */
target = MCF_SLT_SCNT(0) - (1000L * 1000L * 132); /* 1 sec */
while (MCF_SLT_SCNT(0) - target > 0)
{
res = send_cmd(ACMD41, 1UL << 30); /* Wait for end of initialization with ACMD41(HCS) */
if (res != 0xff)
break;
}
debug_printf("res = %d\r\n", res);
target = MCF_SLT_SCNT(0) - (1000L * 1000L * 132); /* 1 sec */
while (MCF_SLT_SCNT(0) - target > 0)
{
res = send_cmd(CMD58, 0); /* Check CCS bit in the OCR */
if (res != 0xff)
break;
}
debug_printf("res = %d\r\n", res);
for (n = 0; n < 4; n++)
ocr[n] = xchg_spi(0xFF, 1);
card_type = (ocr[0] & 0x40) ? CT_SD2 | CT_BLOCK : CT_SD2; /* Card id SDv2 */
}
}
else
{ /* Not SDv2 card */
if (send_cmd(ACMD41, 0) <= 1)
{ /* SDv1 or MMC? */
card_type = CT_SD1;
cmd = ACMD41; /* SDv1 (ACMD41(0)) */
} else {
card_type = CT_MMC;
cmd = CMD1; /* MMCv3 (CMD1(0)) */
}
target = MCF_SLT_SCNT(0) - (1000L * 1000L * 132); /* 1 sec */
while (MCF_SLT_SCNT(0) - target > 0 && send_cmd(cmd, 0)); /* Wait for end of initialization */
if (send_cmd(CMD16, 512) != 0) /* Set block length: 512 */
card_type = 0;
}
}
CardType = card_type; /* Card type */
#ifdef DEBUG
{
uint8_t buff[16];
res = disk_ioctl(0, MMC_GET_CSD, buff);
if (res == RES_OK)
{
debug_printf("CSD of card:\r\n");
hexdump(buff, 16);
}
}
#endif /* DEBUG */
deselect();
if (card_type)
{
/* OK */
SPICLK_FAST(); /* Set fast clock */
Stat &= ~STA_NOINIT; /* Clear STA_NOINIT flag */
debug_printf("card type: %d\r\n", card_type);
//res = disk_ioctl(0, MMC_GET_CSD, buff);
/*
if (res == RES_OK)
{
debug_printf("CSD of card now:\r\n");
hexdump(buff, 16);
}
*/
deselect();
}
else
{
/* Failed */
xprintf("no card type detected in disk_initialize()\r\n");
power_off();
Stat = STA_NOINIT;
}
return Stat;
}
/*-----------------------------------------------------------------------*/
/* Get disk status */
/*-----------------------------------------------------------------------*/
DSTATUS disk_status(uint8_t drv)
{
if (drv) return STA_NOINIT; /* Supports only drive 0 */
return Stat; /* Return disk status */
}
DSTATUS disk_reset(uint8_t drv)
{
if (drv) return STA_NOINIT;
deselect();
disk_initialize(0);
return 0;
}
/*-----------------------------------------------------------------------*/
/* Read sector(s) */
/*-----------------------------------------------------------------------*/
DRESULT disk_read(uint8_t drv, uint8_t *buff, uint32_t sector, uint8_t count)
{
if (drv)
{
debug_printf("wrong drive in disk_read()\r\n");
return RES_PARERR; /* Check parameter */
}
if (! count)
{
debug_printf("wrong count in disk_read()\r\n");
return RES_PARERR;
}
if (Stat & STA_NOINIT)
{
debug_printf("drive not ready in disk_read()\r\n");
return RES_NOTRDY; /* Check if drive is ready */
}
if (!(CardType & CT_BLOCK)) sector *= 512; /* LBA or BA conversion (byte addressing cards) */
if (count == 1) { /* Single sector read */
if ((send_cmd(CMD17, sector) == 0)) /* READ_SINGLE_BLOCK */
if (rcvr_datablock(buff, 512))
count = 0;
}
else { /* Multiple sector read */
if (send_cmd(CMD18, sector) == 0) { /* READ_MULTIPLE_BLOCK */
do {
if (!rcvr_datablock(buff, 512))
break;
buff += 512;
} while (--count);
send_cmd(CMD12, 0); /* STOP_TRANSMISSION */
}
}
deselect();
return count ? RES_ERROR : RES_OK; /* Return result */
}
/*-----------------------------------------------------------------------*/
/* Write sector(s) */
/*-----------------------------------------------------------------------*/
#if _USE_WRITE
DRESULT disk_write(uint8_t drv, const uint8_t *buff, uint32_t sector, uint8_t count)
{
int res;
if (drv || !count) return RES_PARERR; /* Check parameter */
if (Stat & STA_NOINIT) return RES_NOTRDY; /* Check drive status */
if (Stat & STA_PROTECT) return RES_WRPRT; /* Check write protect */
if (!(CardType & CT_BLOCK))
{
sector *= 512; /* LBA ==> BA conversion (byte addressing cards) */
}
if (count == 1)
{ /* Single sector write */
res = send_cmd(CMD24, sector);
if (res == 0)
{
count = 0;
}
else
debug_printf("send_cmd(CMD24, ...) failed in disk_write()\r\n");
if (xmit_datablock(buff, 0xFE))
{
count = 0;
}
else
{
debug_printf("xmit_datablock(buff, ...) failed in disk_write()\r\n");
}
}
else { /* Multiple sector write */
if (CardType & CT_SDC) send_cmd(ACMD23, count); /* Predefine number of sectors */
if (send_cmd(CMD25, sector) == 0)
{ /* WRITE_MULTIPLE_BLOCK */
do
{
if (!xmit_datablock(buff, 0xFC)) break;
buff += 512;
} while (--count);
if (!xmit_datablock(0, 0xFD)) /* STOP_TRAN token */
{
count = 1;
}
}
}
deselect();
if (count) /* we had an error, try a reinit */
{
debug_printf("disk_write() failed (count=%d)\r\n", count);
}
return count ? RES_ERROR : RES_OK; /* Return result */
}
#endif
/*-----------------------------------------------------------------------*/
/* Miscellaneous drive controls other than data read/write */
/*-----------------------------------------------------------------------*/
#if _USE_IOCTL
DRESULT disk_ioctl(uint8_t drv, uint8_t ctrl, void *buff)
{
DRESULT res;
uint8_t n, csd[16], *ptr = buff;
uint32_t *dp, st, ed, csize;
if (drv) return RES_PARERR; /* Check parameter */
if (Stat & STA_NOINIT) return RES_NOTRDY; /* Check if drive is ready */
res = RES_ERROR;
switch (ctrl) {
case CTRL_SYNC : /* Wait for end of internal write process of the drive */
if (select()) {
deselect();
res = RES_OK;
}
break;
case GET_SECTOR_COUNT : /* Get drive capacity in unit of sector (DWORD) */
if ((send_cmd(CMD9, 0) == 0))
{
if (rcvr_datablock(csd, 16))
{
if ((csd[0] >> 6) == 1)
{ /* SDC ver 2.00 */
csize = csd[9] + ((uint16_t)csd[8] << 8) + ((uint32_t)(csd[7] & 63) << 16) + 1;
* (uint32_t*) buff = csize << 10;
}
else
{
/* SDC ver 1.XX or MMC ver 3 */
n = (csd[5] & 15) + ((csd[10] & 128) >> 7) + ((csd[9] & 3) << 1) + 2;
csize = (csd[8] >> 6) + ((uint16_t)csd[7] << 2) + ((uint16_t)(csd[6] & 3) << 10) + 1;
* (uint32_t*) buff = csize << (n - 9);
}
}
res = RES_OK;
}
break;
case GET_SECTOR_SIZE : /* Get sector size in unit of byte (WORD) */
* (uint32_t*) buff = 512;
res = RES_OK;
break;
case GET_BLOCK_SIZE : /* Get erase block size in unit of sector (DWORD) */
if (CardType & CT_SD2) { /* SDC ver 2.00 */
if (send_cmd(ACMD13, 0) == 0) { /* Read SD status */
xchg_spi(0xFF, 1);
if (rcvr_datablock(csd, 16)) { /* Read partial block */
for (n = 64 - 16; n; n--) xchg_spi(0xFF, 1); /* Purge trailing data */
*(uint32_t*)buff = 16UL << (csd[10] >> 4);
res = RES_OK;
}
}
} else { /* SDC ver 1.XX or MMC */
if ((send_cmd(CMD9, 0) == 0))
{
if (rcvr_datablock(csd, 16))
{
/* Read CSD */
if (CardType & CT_SD1)
{ /* SDC ver 1.XX */
* (uint32_t*) buff = (((csd[10] & 63) << 1) + ((uint16_t)(csd[11] & 128) >> 7) + 1) << ((csd[13] >> 6) - 1);
}
else
{
/* MMC */
*(uint32_t*)buff = ((uint16_t)((csd[10] & 124) >> 2) + 1) * (((csd[11] & 3) << 3) + ((csd[11] & 224) >> 5) + 1);
}
}
res = RES_OK;
}
}
break;
case CTRL_ERASE_SECTOR : /* Erase a block of sectors (used when _USE_ERASE == 1) */
if (!(CardType & CT_SDC)) break; /* Check if the card is SDC */
if (disk_ioctl(drv, MMC_GET_CSD, csd)) break; /* Get CSD */
if (!(csd[0] >> 6) && !(csd[10] & 0x40)) break; /* Check if sector erase can be applied to the card */
dp = buff; st = dp[0]; ed = dp[1]; /* Load sector block */
if (!(CardType & CT_BLOCK)) {
st *= 512; ed *= 512;
}
if (send_cmd(CMD32, st) == 0)
{
if (send_cmd(CMD33, ed) == 0)
if (send_cmd(CMD38, 0) == 0)
if (wait_ready(30))
; /* Erase sector block */
}
res = RES_OK; /* FatFs does not check result of this command */
break;
/* Following command are not used by FatFs module */
case MMC_GET_TYPE : /* Get MMC/SDC type (BYTE) */
*ptr = CardType;
res = RES_OK;
break;
case MMC_GET_CSD : /* Read CSD (16 bytes) */
if (send_cmd(CMD9, 0) == 0 /* READ_CSD */
&& rcvr_datablock(ptr, 16))
res = RES_OK;
break;
case MMC_GET_CID : /* Read CID (16 bytes) */
if (send_cmd(CMD10, 0) == 0 /* READ_CID */
&& rcvr_datablock(ptr, 16))
res = RES_OK;
break;
case MMC_GET_OCR : /* Read OCR (4 bytes) */
if (send_cmd(CMD58, 0) == 0) { /* READ_OCR */
for (n = 4; n; n--) *ptr++ = xchg_spi(0xFF, 1);
res = RES_OK;
}
break;
case MMC_GET_SDSTAT : /* Read SD status (64 bytes) */
if (send_cmd(ACMD13, 0) == 0) { /* SD_STATUS */
xchg_spi(0xFF, 1);
if (rcvr_datablock(ptr, 64))
res = RES_OK;
}
break;
default:
res = RES_PARERR;
break;
}
deselect();
return res;
}
#endif
/*-----------------------------------------------------------------------*/
/* Device timer function */
/*-----------------------------------------------------------------------*/
/* This function must be called from timer interrupt routine in period
/ of 1 ms to generate card control timing.
*/
#ifdef _NOT_USED_
void disk_timerproc (void)
{
uint8_t s;
s = Stat;
if (WP) /* Write protected */
s |= STA_PROTECT;
else /* Write enabled */
s &= ~STA_PROTECT;
//if (INS) /* Card is in socket */
s &= ~STA_NODISK;
//else /* Socket empty */
// s |= (STA_NODISK | STA_NOINIT);
Stat = s;
}
#endif /* _NOT_USED_ */

121
BaS_gcc/spi/sd_card.c Normal file
View File

@@ -0,0 +1,121 @@
/*
* sd_card.c
*
* Created on: 16.12.2012
* Author: mfro
*
* This file is part of BaS_gcc.
*
* BaS_gcc is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* BaS_gcc is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with BaS_gcc. If not, see <http://www.gnu.org/licenses/>.
*
* Copyright 2012 M. Froeschle
*/
#include <sd_card.h>
#include <diskio.h>
#include <ff.h>
#include <bas_printf.h>
#define WELCOME_NAME "WELCOME.MSG"
#define FLASHCODE_NAME "BENCH.BIN"
#define FLASHCODE_ADDRESS 0x03000000L
/*
* initialize SD-card and FF FAT filesystem routines. Harness to load a file during boot.
*
* This is currently more like a proof of concept,
* but will be extended to load and execute a bootstrap flasher to be able to flash the Bee directly
* from card.
*/
void sd_card_init(void)
{
DRESULT res;
FATFS fs;
FRESULT fres;
disk_initialize(0);
res = disk_status(0);
xprintf("disk status of SD card is %d\r\n", res);
if (res == RES_OK)
{
fres = f_mount(0, &fs);
xprintf("mount status of SD card fs is %d\r\n", fres);
if (fres == FR_OK)
{
DIR directory;
FIL file;
fres = f_opendir(&directory, "\\");
if (fres == FR_OK)
{
FILINFO fi;
while (((fres = f_readdir(&directory, &fi)) == FR_OK) && fi.fname[0])
{
xprintf("%13.13s %d\r\n", fi.fname, fi.fsize);
}
}
else
{
xprintf("could not open directory \"\\\" on SD-card! Error code: %d\r\n", fres);
}
/*
* let's see if we find our boot flashing executable on disk
*/
fres = f_open(&file, FLASHCODE_NAME, FA_READ);
if (fres == FR_OK)
{
/*
* yes, load and execute it
*
* FIXME: we will need some kind of user confirmation here
* to avoid unwanted flashing or "bootsector viruses" before going productive
*/
uint32_t size; /* length of code piece read */
uint32_t total_size = 0L;
int32_t start_time = MCF_SLT_SCNT(0);
int32_t end_time;
int32_t time = 0;
while ((fres = f_read(&file, (void *) FLASHCODE_ADDRESS, 1024 * 1000, &size)) == FR_OK && size > 0)
{
total_size += size / 1024;
xprintf("read hunk of %d bytes, total_size = %d kBytes\r\n", size, total_size);
}
end_time = MCF_SLT_SCNT(0);
time = (end_time - start_time) / 132L;
xprintf("result of f_read: %ld, %ld kbytes read\r\n", fres, total_size);
xprintf("time to load %s: %ld s\r\n", FLASHCODE_NAME, time / 1000 / 100);
xprintf("equals to about %ld kBytes/second\r\n", total_size / (time / 1000 / 100));
}
f_close(&file);
fres = f_open(&file, WELCOME_NAME, FA_READ);
if (fres == FR_OK)
{
char line[128];
while (f_gets(line, sizeof(line), &file))
{
xprintf("%s", line);
}
}
f_close(&file);
}
f_mount(0, 0L); /* release work area */
}
}