added multichannel DMA API (MCDAPI) to BaS

This commit is contained in:
Markus Fröschle
2013-07-11 19:49:32 +00:00
parent 5687be4424
commit 5ffcf77588
7 changed files with 4025 additions and 1 deletions

View File

@@ -42,6 +42,7 @@ CFLAGS=-mcpu=5474\
-Wa,--register-prefix-optional
SRCDIR=sources
MCDSRC=mcdapi
OBJDIR=objs
# Linker control file. The final $(LDCFILE) is intermediate only (preprocessed version of $(LDCSRC)
@@ -83,10 +84,16 @@ ASRCS= \
$(SRCDIR)/illegal_instruction.S \
$(SRCDIR)/xhdi_vec.S
MCDSRCS=\
$(MCDSRC)/MCD_dmaApi.c \
$(MCDSRC)/MCD_tasks.c \
$(MCDSRC)/MCD_tasksInit.c
COBJS=$(patsubst $(SRCDIR)/%.o,$(OBJDIR)/%.o,$(patsubst %.c,%.o,$(CSRCS)))
AOBJS=$(patsubst $(SRCDIR)/%.o,$(OBJDIR)/%.o,$(patsubst %.S,%.o,$(ASRCS)))
MCDOBJS=$(patsubst $(MCDSRCS)/%.o,$(OBJDIR)/%.o,$(patsubst %.c,%.o,$(MCDSRCS)))
OBJS=$(COBJS) $(AOBJS)
OBJS=$(COBJS) $(AOBJS) $(MCDOBJS)
LIBBAS=libbas.a
all: fls ram bfl lib

362
BaS_gcc/mcdapi/MCD_dma.h Executable file
View File

@@ -0,0 +1,362 @@
/*
* File: MCD_dma.h
* Purpose: Main header file for multi-channel DMA API.
*
* Notes:
*/
#ifndef _MCD_API_H
#define _MCD_API_H
/*
* Turn Execution Unit tasks ON (#define) or OFF (#undef)
*/
#undef MCD_INCLUDE_EU
/*
* Number of DMA channels
*/
#define NCHANNELS 16
/*
* Total number of variants
*/
#ifdef MCD_INCLUDE_EU
#define NUMOFVARIANTS 6
#else
#define NUMOFVARIANTS 4
#endif
/*
* Define sizes of the various tables
*/
#define TASK_TABLE_SIZE (NCHANNELS*32)
#define VAR_TAB_SIZE (128)
#define CONTEXT_SAVE_SIZE (128)
#define FUNCDESC_TAB_SIZE (256)
#ifdef MCD_INCLUDE_EU
#define FUNCDESC_TAB_NUM 16
#else
#define FUNCDESC_TAB_NUM 1
#endif
#ifndef DEFINESONLY
/*
* Portability typedefs
*/
typedef int s32;
typedef unsigned int u32;
typedef short s16;
typedef unsigned short u16;
typedef char s8;
typedef unsigned char u8;
/*
* These structures represent the internal registers of the
* multi-channel DMA
*/
struct dmaRegs_s {
u32 taskbar; /* task table base address register */
u32 currPtr;
u32 endPtr;
u32 varTablePtr;
u16 dma_rsvd0;
u16 ptdControl; /* ptd control */
u32 intPending; /* interrupt pending register */
u32 intMask; /* interrupt mask register */
u16 taskControl[16]; /* task control registers */
u8 priority[32]; /* priority registers */
u32 initiatorMux; /* initiator mux control */
u32 taskSize0; /* task size control register 0. */
u32 taskSize1; /* task size control register 1. */
u32 dma_rsvd1; /* reserved */
u32 dma_rsvd2; /* reserved */
u32 debugComp1; /* debug comparator 1 */
u32 debugComp2; /* debug comparator 2 */
u32 debugControl; /* debug control */
u32 debugStatus; /* debug status */
u32 ptdDebug; /* priority task decode debug */
u32 dma_rsvd3[31]; /* reserved */
};
typedef volatile struct dmaRegs_s dmaRegs;
#endif
/*
* PTD contrl reg bits
*/
#define PTD_CTL_TSK_PRI 0x8000
#define PTD_CTL_COMM_PREFETCH 0x0001
/*
* Task Control reg bits and field masks
*/
#define TASK_CTL_EN 0x8000
#define TASK_CTL_VALID 0x4000
#define TASK_CTL_ALWAYS 0x2000
#define TASK_CTL_INIT_MASK 0x1f00
#define TASK_CTL_ASTRT 0x0080
#define TASK_CTL_HIPRITSKEN 0x0040
#define TASK_CTL_HLDINITNUM 0x0020
#define TASK_CTL_ASTSKNUM_MASK 0x000f
/*
* Priority reg bits and field masks
*/
#define PRIORITY_HLD 0x80
#define PRIORITY_PRI_MASK 0x07
/*
* Debug Control reg bits and field masks
*/
#define DBG_CTL_BLOCK_TASKS_MASK 0xffff0000
#define DBG_CTL_AUTO_ARM 0x00008000
#define DBG_CTL_BREAK 0x00004000
#define DBG_CTL_COMP1_TYP_MASK 0x00003800
#define DBG_CTL_COMP2_TYP_MASK 0x00000070
#define DBG_CTL_EXT_BREAK 0x00000004
#define DBG_CTL_INT_BREAK 0x00000002
/*
* PTD Debug reg selector addresses
* This reg must be written with a value to show the contents of
* one of the desired internal register.
*/
#define PTD_DBG_REQ 0x00 /* shows the state of 31 initiators */
#define PTD_DBG_TSK_VLD_INIT 0x01 /* shows which 16 tasks are valid and
have initiators asserted */
/*
* General return values
*/
#define MCD_OK 0
#define MCD_ERROR -1
#define MCD_TABLE_UNALIGNED -2
#define MCD_CHANNEL_INVALID -3
/*
* MCD_initDma input flags
*/
#define MCD_RELOC_TASKS 0x00000001
#define MCD_NO_RELOC_TASKS 0x00000000
#define MCD_COMM_PREFETCH_EN 0x00000002 /* Commbus Prefetching - MCF547x/548x ONLY */
/*
* MCD_dmaStatus Status Values for each channel
*/
#define MCD_NO_DMA 1 /* No DMA has been requested since reset */
#define MCD_IDLE 2 /* DMA active, but the initiator is currently inactive */
#define MCD_RUNNING 3 /* DMA active, and the initiator is currently active */
#define MCD_PAUSED 4 /* DMA active but it is currently paused */
#define MCD_HALTED 5 /* the most recent DMA has been killed with MCD_killTask() */
#define MCD_DONE 6 /* the most recent DMA has completed. */
/*
* MCD_startDma parameter defines
*/
/*
* Constants for the funcDesc parameter
*/
/* Byte swapping: */
#define MCD_NO_BYTE_SWAP 0x00045670 /* to disable byte swapping. */
#define MCD_BYTE_REVERSE 0x00076540 /* to reverse the bytes of each u32 of the DMAed data. */
#define MCD_U16_REVERSE 0x00067450 /* to reverse the 16-bit halves of
each 32-bit data value being DMAed.*/
#define MCD_U16_BYTE_REVERSE 0x00054760 /* to reverse the byte halves of each
16-bit half of each 32-bit data value DMAed */
#define MCD_NO_BIT_REV 0x00000000 /* do not reverse the bits of each byte DMAed. */
#define MCD_BIT_REV 0x00088880 /* reverse the bits of each byte DMAed */
/* CRCing: */
#define MCD_CRC16 0xc0100000 /* to perform CRC-16 on DMAed data. */
#define MCD_CRCCCITT 0xc0200000 /* to perform CRC-CCITT on DMAed data. */
#define MCD_CRC32 0xc0300000 /* to perform CRC-32 on DMAed data. */
#define MCD_CSUMINET 0xc0400000 /* to perform internet checksums on DMAed data.*/
#define MCD_NO_CSUM 0xa0000000 /* to perform no checksumming. */
#define MCD_FUNC_NOEU1 (MCD_NO_BYTE_SWAP | MCD_NO_BIT_REV | MCD_NO_CSUM)
#define MCD_FUNC_NOEU2 (MCD_NO_BYTE_SWAP | MCD_NO_CSUM)
/*
* Constants for the flags parameter
*/
#define MCD_TT_FLAGS_RL 0x00000001 /* Read line */
#define MCD_TT_FLAGS_CW 0x00000002 /* Combine Writes */
#define MCD_TT_FLAGS_SP 0x00000004 /* Speculative prefetch(XLB) MCF547x/548x ONLY */
#define MCD_TT_FLAGS_MASK 0x000000ff
#define MCD_TT_FLAGS_DEF (MCD_TT_FLAGS_RL | MCD_TT_FLAGS_CW)
#define MCD_SINGLE_DMA 0x00000100 /* Unchained DMA */
#define MCD_CHAIN_DMA /* TBD */
#define MCD_EU_DMA /* TBD */
#define MCD_FECTX_DMA 0x00001000 /* FEC TX ring DMA */
#define MCD_FECRX_DMA 0x00002000 /* FEC RX ring DMA */
/* these flags are valid for MCD_startDma and the chained buffer descriptors */
#define MCD_BUF_READY 0x80000000 /* indicates that this buffer is now under the DMA's control */
#define MCD_WRAP 0x20000000 /* to tell the FEC Dmas to wrap to the first BD */
#define MCD_INTERRUPT 0x10000000 /* to generate an interrupt after completion of the DMA. */
#define MCD_END_FRAME 0x08000000 /* tell the DMA to end the frame when transferring
last byte of data in buffer */
#define MCD_CRC_RESTART 0x40000000 /* to empty out the accumulated checksum
prior to performing the DMA. */
/* Defines for the FEC buffer descriptor control/status word*/
#define MCD_FEC_BUF_READY 0x8000
#define MCD_FEC_WRAP 0x2000
#define MCD_FEC_INTERRUPT 0x1000
#define MCD_FEC_END_FRAME 0x0800
/*
* Defines for general intuitiveness
*/
#define MCD_TRUE 1
#define MCD_FALSE 0
/*
* Three different cases for destination and source.
*/
#define MINUS1 -1
#define ZERO 0
#define PLUS1 1
#ifndef DEFINESONLY
/* Task Table Entry struct*/
typedef struct {
u32 TDTstart; /* task descriptor table start */
u32 TDTend; /* task descriptor table end */
u32 varTab; /* variable table start */
u32 FDTandFlags; /* function descriptor table start and flags */
volatile u32 descAddrAndStatus;
volatile u32 modifiedVarTab;
u32 contextSaveSpace; /* context save space start */
u32 literalBases;
} TaskTableEntry;
/* Chained buffer descriptor */
typedef volatile struct MCD_bufDesc_struct MCD_bufDesc;
struct MCD_bufDesc_struct {
u32 flags; /* flags describing the DMA */
u32 csumResult; /* checksum from checksumming performed since last checksum reset */
s8 *srcAddr; /* the address to move data from */
s8 *destAddr; /* the address to move data to */
s8 *lastDestAddr; /* the last address written to */
u32 dmaSize; /* the number of bytes to transfer independent of the transfer size */
MCD_bufDesc *next; /* next buffer descriptor in chain */
u32 info; /* private information about this descriptor; DMA does not affect it */
};
/* Progress Query struct */
typedef volatile struct MCD_XferProg_struct {
s8 *lastSrcAddr; /* the most-recent or last, post-increment source address */
s8 *lastDestAddr; /* the most-recent or last, post-increment destination address */
u32 dmaSize; /* the amount of data transferred for the current buffer */
MCD_bufDesc *currBufDesc;/* pointer to the current buffer descriptor being DMAed */
} MCD_XferProg;
/* FEC buffer descriptor */
typedef volatile struct MCD_bufDescFec_struct {
u16 statCtrl;
u16 length;
u32 dataPointer;
} MCD_bufDescFec;
/*************************************************************************/
/*
* API function Prototypes - see MCD_dmaApi.c for further notes
*/
/*
* MCD_startDma starts a particular kind of DMA .
*/
int MCD_startDma (
int channel, /* the channel on which to run the DMA */
s8 *srcAddr, /* the address to move data from, or buffer-descriptor address */
s16 srcIncr, /* the amount to increment the source address per transfer */
s8 *destAddr, /* the address to move data to */
s16 destIncr, /* the amount to increment the destination address per transfer */
u32 dmaSize, /* the number of bytes to transfer independent of the transfer size */
u32 xferSize, /* the number bytes in of each data movement (1, 2, or 4) */
u32 initiator, /* what device initiates the DMA */
int priority, /* priority of the DMA */
u32 flags, /* flags describing the DMA */
u32 funcDesc /* a description of byte swapping, bit swapping, and CRC actions */
);
/*
* MCD_initDma() initializes the DMA API by setting up a pointer to the DMA
* registers, relocating and creating the appropriate task structures, and
* setting up some global settings
*/
int MCD_initDma (dmaRegs *sDmaBarAddr, void *taskTableDest, u32 flags);
/*
* MCD_dmaStatus() returns the status of the DMA on the requested channel.
*/
int MCD_dmaStatus (int channel);
/*
* MCD_XferProgrQuery() returns progress of DMA on requested channel
*/
int MCD_XferProgrQuery (int channel, MCD_XferProg *progRep);
/*
* MCD_killDma() halts the DMA on the requested channel, without any
* intention of resuming the DMA.
*/
int MCD_killDma (int channel);
/*
* MCD_continDma() continues a DMA which as stopped due to encountering an
* unready buffer descriptor.
*/
int MCD_continDma (int channel);
/*
* MCD_pauseDma() pauses the DMA on the given channel ( if any DMA is
* running on that channel).
*/
int MCD_pauseDma (int channel);
/*
* MCD_resumeDma() resumes the DMA on a given channel (if any DMA is
* running on that channel).
*/
int MCD_resumeDma (int channel);
/*
* MCD_csumQuery provides the checksum/CRC after performing a non-chained DMA
*/
int MCD_csumQuery (int channel, u32 *csum);
/*
* MCD_getCodeSize provides the packed size required by the microcoded task
* and structures.
*/
int MCD_getCodeSize(void);
/*
* MCD_getVersion provides a pointer to a version string and returns a
* version number.
*/
int MCD_getVersion(char **longVersion);
/* macro for setting a location in the variable table */
#define MCD_SET_VAR(taskTab,idx,value) ((u32 *)(taskTab)->varTab)[idx] = value
/* Note that MCD_SET_VAR() is invoked many times in firing up a DMA function,
so I'm avoiding surrounding it with "do {} while(0)" */
#endif /* DEFINESONLY */
#endif /* _MCD_API_H */

933
BaS_gcc/mcdapi/MCD_dmaApi.c Executable file
View File

@@ -0,0 +1,933 @@
/*
* File: MCD_dmaApi.c
* Purpose: Main C file for multi-channel DMA API.
*
* Notes:
*/
#include "MCD_dma.h"
#include "MCD_tasksInit.h"
#include "MCD_progCheck.h"
/********************************************************************/
/*
* This is an API-internal pointer to the DMA's registers
*/
dmaRegs *MCD_dmaBar;
/*
* These are the real and model task tables as generated by the
* build process
*/
extern TaskTableEntry MCD_realTaskTableSrc[NCHANNELS];
extern TaskTableEntry MCD_modelTaskTableSrc[NUMOFVARIANTS];
/*
* However, this (usually) gets relocated to on-chip SRAM, at which
* point we access them as these tables
*/
volatile TaskTableEntry *MCD_taskTable;
TaskTableEntry *MCD_modelTaskTable;
/*
* MCD_chStatus[] is an array of status indicators for remembering
* whether a DMA has ever been attempted on each channel, pausing
* status, etc.
*/
static int MCD_chStatus[NCHANNELS] =
{
MCD_NO_DMA, MCD_NO_DMA, MCD_NO_DMA, MCD_NO_DMA,
MCD_NO_DMA, MCD_NO_DMA, MCD_NO_DMA, MCD_NO_DMA,
MCD_NO_DMA, MCD_NO_DMA, MCD_NO_DMA, MCD_NO_DMA,
MCD_NO_DMA, MCD_NO_DMA, MCD_NO_DMA, MCD_NO_DMA
};
/*
* Prototypes for local functions
*/
static void MCD_memcpy (int *dest, int *src, u32 size);
static void MCD_resmActions (int channel);
/*
* Buffer descriptors used for storage of progress info for single Dmas
* Also used as storage for the DMA for CRCs for single DMAs
* Otherwise, the DMA does not parse these buffer descriptors
*/
#ifdef MCD_INCLUDE_EU
extern MCD_bufDesc MCD_singleBufDescs[NCHANNELS];
#else
MCD_bufDesc MCD_singleBufDescs[NCHANNELS];
#endif
MCD_bufDesc *MCD_relocBuffDesc;
/*
* Defines for the debug control register's functions
*/
#define DBG_CTL_COMP1_TASK (0x00002000) /* have comparator 1 look for a task # */
#define DBG_CTL_ENABLE (DBG_CTL_AUTO_ARM | \
DBG_CTL_BREAK | \
DBG_CTL_INT_BREAK | \
DBG_CTL_COMP1_TASK)
#define DBG_CTL_DISABLE (DBG_CTL_AUTO_ARM | \
DBG_CTL_INT_BREAK | \
DBG_CTL_COMP1_TASK)
#define DBG_KILL_ALL_STAT (0xFFFFFFFF)
/*
* Offset to context save area where progress info is stored
*/
#define CSAVE_OFFSET 10
/*
* Defines for Byte Swapping
*/
#define MCD_BYTE_SWAP_KILLER 0xFFF8888F
#define MCD_NO_BYTE_SWAP_ATALL 0x00040000
/*
* Execution Unit Identifiers
*/
#define MAC 0 /* legacy - not used */
#define LUAC 1 /* legacy - not used */
#define CRC 2 /* legacy - not used */
#define LURC 3 /* Logic Unit with CRC */
/*
* Task Identifiers
*/
#define TASK_CHAINNOEU 0
#define TASK_SINGLENOEU 1
#ifdef MCD_INCLUDE_EU
#define TASK_CHAINEU 2
#define TASK_SINGLEEU 3
#define TASK_FECRX 4
#define TASK_FECTX 5
#else
#define TASK_CHAINEU 0
#define TASK_SINGLEEU 1
#define TASK_FECRX 2
#define TASK_FECTX 3
#endif
/*
* Structure to remember which variant is on which channel
* TBD- need this?
*/
typedef struct MCD_remVariants_struct MCD_remVariant;
struct MCD_remVariants_struct
{
int remDestRsdIncr[NCHANNELS]; /* -1,0,1 */
int remSrcRsdIncr[NCHANNELS]; /* -1,0,1 */
s16 remDestIncr[NCHANNELS]; /* DestIncr */
s16 remSrcIncr[NCHANNELS]; /* srcIncr */
u32 remXferSize[NCHANNELS]; /* xferSize */
};
/*
* Structure to remember the startDma parameters for each channel
*/
MCD_remVariant MCD_remVariants;
/********************************************************************/
/*
* Function: MCD_initDma
* Purpose: Initializes the DMA API by setting up a pointer to the DMA
* registers, relocating and creating the appropriate task
* structures, and setting up some global settings
* Arguments:
* dmaBarAddr - pointer to the multichannel DMA registers
* taskTableDest - location to move DMA task code and structs to
* flags - operational parameters
* Return Value:
* MCD_TABLE_UNALIGNED if taskTableDest is not 512-byte aligned
* MCD_OK otherwise
*/
extern u32 MCD_funcDescTab0[];
int MCD_initDma (dmaRegs *dmaBarAddr, void *taskTableDest, u32 flags)
{
int i;
TaskTableEntry *entryPtr;
/* setup the local pointer to register set */
MCD_dmaBar = dmaBarAddr;
/* do we need to move/create a task table */
if ((flags & MCD_RELOC_TASKS) != 0)
{
int fixedSize;
u32 *fixedPtr;
/*int *tablePtr = taskTableDest;TBD*/
int varTabsOffset, funcDescTabsOffset, contextSavesOffset;
int taskDescTabsOffset;
int taskTableSize, varTabsSize, funcDescTabsSize, contextSavesSize;
int taskDescTabSize;
int i;
/* check if physical address is aligned on 512 byte boundary */
if (((u32)taskTableDest & 0x000001ff) != 0)
return(MCD_TABLE_UNALIGNED);
MCD_taskTable = taskTableDest; /* set up local pointer to task Table */
/*
* Create a task table:
* - compute aligned base offsets for variable tables and
* function descriptor tables, then
* - loop through the task table and setup the pointers
* - copy over model task table with the the actual task descriptor
* tables
*/
taskTableSize = NCHANNELS * sizeof(TaskTableEntry);
/* align variable tables to size */
varTabsOffset = taskTableSize + (u32)taskTableDest;
if ((varTabsOffset & (VAR_TAB_SIZE - 1)) != 0)
varTabsOffset = (varTabsOffset + VAR_TAB_SIZE) & (~VAR_TAB_SIZE);
/* align function descriptor tables */
varTabsSize = NCHANNELS * VAR_TAB_SIZE;
funcDescTabsOffset = varTabsOffset + varTabsSize;
if ((funcDescTabsOffset & (FUNCDESC_TAB_SIZE - 1)) != 0)
funcDescTabsOffset = (funcDescTabsOffset + FUNCDESC_TAB_SIZE) &
(~FUNCDESC_TAB_SIZE);
funcDescTabsSize = FUNCDESC_TAB_NUM * FUNCDESC_TAB_SIZE;
contextSavesOffset = funcDescTabsOffset + funcDescTabsSize;
contextSavesSize = (NCHANNELS * CONTEXT_SAVE_SIZE);
fixedSize = taskTableSize + varTabsSize + funcDescTabsSize +
contextSavesSize;
/* zero the thing out */
fixedPtr = (u32 *)taskTableDest;
for (i = 0;i<(fixedSize/4);i++)
fixedPtr[i] = 0;
entryPtr = (TaskTableEntry*)MCD_taskTable;
/* set up fixed pointers */
for (i = 0; i < NCHANNELS; i++)
{
entryPtr[i].varTab = (u32)varTabsOffset; /* update ptr to local value */
entryPtr[i].FDTandFlags = (u32)funcDescTabsOffset | MCD_TT_FLAGS_DEF;
entryPtr[i].contextSaveSpace = (u32)contextSavesOffset;
varTabsOffset += VAR_TAB_SIZE;
#ifdef MCD_INCLUDE_EU /* if not there is only one, just point to the same one */
funcDescTabsOffset += FUNCDESC_TAB_SIZE;
#endif
contextSavesOffset += CONTEXT_SAVE_SIZE;
}
/* copy over the function descriptor table */
for ( i = 0; i < FUNCDESC_TAB_NUM; i++)
{
MCD_memcpy((void*)(entryPtr[i].FDTandFlags & ~MCD_TT_FLAGS_MASK),
(void*)MCD_funcDescTab0, FUNCDESC_TAB_SIZE);
}
/* copy model task table to where the context saves stuff leaves off*/
MCD_modelTaskTable = (TaskTableEntry*)contextSavesOffset;
MCD_memcpy ((void*)MCD_modelTaskTable, (void*)MCD_modelTaskTableSrc,
NUMOFVARIANTS * sizeof(TaskTableEntry));
entryPtr = MCD_modelTaskTable; /* point to local version of
model task table */
taskDescTabsOffset = (u32)MCD_modelTaskTable +
(NUMOFVARIANTS * sizeof(TaskTableEntry));
/* copy actual task code and update TDT ptrs in local model task table */
for (i = 0; i < NUMOFVARIANTS; i++)
{
taskDescTabSize = entryPtr[i].TDTend - entryPtr[i].TDTstart + 4;
MCD_memcpy ((void*)taskDescTabsOffset, (void*)entryPtr[i].TDTstart, taskDescTabSize);
entryPtr[i].TDTstart = (u32)taskDescTabsOffset;
taskDescTabsOffset += taskDescTabSize;
entryPtr[i].TDTend = (u32)taskDescTabsOffset - 4;
}
#ifdef MCD_INCLUDE_EU /* Tack single DMA BDs onto end of code so API controls
where they are since DMA might write to them */
MCD_relocBuffDesc = (MCD_bufDesc*)(entryPtr[NUMOFVARIANTS - 1].TDTend + 4);
#else /* DMA does not touch them so they can be wherever and we don't need to
waste SRAM on them */
MCD_relocBuffDesc = MCD_singleBufDescs;
#endif
}
else
{
/* point the would-be relocated task tables and the
buffer descriptors to the ones the linker generated */
if (((u32)MCD_realTaskTableSrc & 0x000001ff) != 0)
return(MCD_TABLE_UNALIGNED);
/* need to add code to make sure that every thing else is aligned properly TBD*/
/* this is problematic if we init more than once or after running tasks,
need to add variable to see if we have aleady init'd */
entryPtr = MCD_realTaskTableSrc;
for (i = 0; i < NCHANNELS; i++)
{
if (((entryPtr[i].varTab & (VAR_TAB_SIZE - 1)) != 0) ||
((entryPtr[i].FDTandFlags & (FUNCDESC_TAB_SIZE - 1)) != 0))
return(MCD_TABLE_UNALIGNED);
}
MCD_taskTable = MCD_realTaskTableSrc;
MCD_modelTaskTable = MCD_modelTaskTableSrc;
MCD_relocBuffDesc = MCD_singleBufDescs;
}
/* Make all channels as totally inactive, and remember them as such: */
MCD_dmaBar->taskbar = (u32) MCD_taskTable;
for (i = 0; i < NCHANNELS; i++)
{
MCD_dmaBar->taskControl[i] = 0x0;
MCD_chStatus[i] = MCD_NO_DMA;
}
/* Set up pausing mechanism to inactive state: */
MCD_dmaBar->debugComp1 = 0; /* no particular values yet for either comparator registers */
MCD_dmaBar->debugComp2 = 0;
MCD_dmaBar->debugControl = DBG_CTL_DISABLE;
MCD_dmaBar->debugStatus = DBG_KILL_ALL_STAT;
/* enable or disable commbus prefetch, really need an ifdef or
something to keep from trying to set this in the 8220 */
if ((flags & MCD_COMM_PREFETCH_EN) != 0)
MCD_dmaBar->ptdControl &= ~PTD_CTL_COMM_PREFETCH;
else
MCD_dmaBar->ptdControl |= PTD_CTL_COMM_PREFETCH;
return(MCD_OK);
}
/*********************** End of MCD_initDma() ***********************/
/********************************************************************/
/* Function: MCD_dmaStatus
* Purpose: Returns the status of the DMA on the requested channel
* Arguments: channel - channel number
* Returns: Predefined status indicators
*/
int MCD_dmaStatus (int channel)
{
u16 tcrValue;
if((channel < 0) || (channel >= NCHANNELS))
return(MCD_CHANNEL_INVALID);
tcrValue = MCD_dmaBar->taskControl[channel];
if ((tcrValue & TASK_CTL_EN) == 0)
{ /* nothing running */
/* if last reported with task enabled */
if ( MCD_chStatus[channel] == MCD_RUNNING
|| MCD_chStatus[channel] == MCD_IDLE)
MCD_chStatus[channel] = MCD_DONE;
}
else /* something is running */
{
/* There are three possibilities: paused, running or idle. */
if ( MCD_chStatus[channel] == MCD_RUNNING
|| MCD_chStatus[channel] == MCD_IDLE)
{
MCD_dmaBar->ptdDebug = PTD_DBG_TSK_VLD_INIT;
/* This register is selected to know which initiator is
actually asserted. */
if ((MCD_dmaBar->ptdDebug >> channel ) & 0x1 )
MCD_chStatus[channel] = MCD_RUNNING;
else
MCD_chStatus[channel] = MCD_IDLE;
/* do not change the status if it is already paused. */
}
}
return MCD_chStatus[channel];
}
/******************** End of MCD_dmaStatus() ************************/
/********************************************************************/
/* Function: MCD_startDma
* Ppurpose: Starts a particular kind of DMA
* Arguments: see below
* Returns: MCD_CHANNEL_INVALID if channel is invalid, else MCD_OK
*/
int MCD_startDma (
int channel, /* the channel on which to run the DMA */
s8 *srcAddr, /* the address to move data from, or physical buffer-descriptor address */
s16 srcIncr, /* the amount to increment the source address per transfer */
s8 *destAddr, /* the address to move data to */
s16 destIncr, /* the amount to increment the destination address per transfer */
u32 dmaSize, /* the number of bytes to transfer independent of the transfer size */
u32 xferSize, /* the number bytes in of each data movement (1, 2, or 4) */
u32 initiator, /* what device initiates the DMA */
int priority, /* priority of the DMA */
u32 flags, /* flags describing the DMA */
u32 funcDesc /* a description of byte swapping, bit swapping, and CRC actions */
#ifdef MCD_NEED_ADDR_TRANS
s8 *srcAddrVirt /* virtual buffer descriptor address TBD*/
#endif
)
{
int srcRsdIncr, destRsdIncr;
int *cSave;
short xferSizeIncr;
int tcrCount = 0;
#ifdef MCD_INCLUDE_EU
u32 *realFuncArray;
#endif
if((channel < 0) || (channel >= NCHANNELS))
return(MCD_CHANNEL_INVALID);
/* tbd - need to determine the proper response to a bad funcDesc when not
including EU functions, for now, assign a benign funcDesc, but maybe
should return an error */
#ifndef MCD_INCLUDE_EU
funcDesc = MCD_FUNC_NOEU1;
#endif
#ifdef MCD_DEBUG
printf("startDma:Setting up params\n");
#endif
/* Set us up for task-wise priority. We don't technically need to do this on every start, but
since the register involved is in the same longword as other registers that users are in control
of, setting it more than once is probably preferable. That since the documentation doesn't seem
to be completely consistent about the nature of the PTD control register. */
MCD_dmaBar->ptdControl |= (u16) 0x8000;
#if 1 /* Not sure what we need to keep here rtm TBD */
/* Calculate additional parameters to the regular DMA calls. */
srcRsdIncr = srcIncr < 0 ? -1 : (srcIncr > 0 ? 1 : 0);
destRsdIncr = destIncr < 0 ? -1 : (destIncr > 0 ? 1 : 0);
xferSizeIncr = (xferSize & 0xffff) | 0x20000000;
/* Remember for each channel which variant is running. */
MCD_remVariants.remSrcRsdIncr[channel] = srcRsdIncr;
MCD_remVariants.remDestRsdIncr[channel] = destRsdIncr;
MCD_remVariants.remDestIncr[channel] = destIncr;
MCD_remVariants.remSrcIncr[channel] = srcIncr;
MCD_remVariants.remXferSize[channel] = xferSize;
#endif
cSave = (int*)(MCD_taskTable[channel].contextSaveSpace) + CSAVE_OFFSET + CURRBD;
#ifdef MCD_INCLUDE_EU /* may move this to EU specific calls */
realFuncArray = (u32 *) (MCD_taskTable[channel].FDTandFlags & 0xffffff00);
/* Modify the LURC's normal and byte-residue-loop functions according to parameter. */
realFuncArray[(LURC*16)] = xferSize == 4 ?
funcDesc : xferSize == 2 ?
funcDesc & 0xfffff00f : funcDesc & 0xffff000f;
realFuncArray[(LURC*16+1)] = (funcDesc & MCD_BYTE_SWAP_KILLER) | MCD_NO_BYTE_SWAP_ATALL;
#endif
/* Write the initiator field in the TCR, and also set the initiator-hold
bit. Note that,due to a hardware quirk, this could collide with an
MDE access to the initiator-register file, so we have to verify that the write
reads back correctly. */
MCD_dmaBar->taskControl[channel] =
(initiator << 8) | TASK_CTL_HIPRITSKEN | TASK_CTL_HLDINITNUM;
while(((MCD_dmaBar->taskControl[channel] & 0x1fff) !=
((initiator << 8) | TASK_CTL_HIPRITSKEN | TASK_CTL_HLDINITNUM)) &&
(tcrCount < 1000))
{
tcrCount++;
/*MCD_dmaBar->ptd_tcr[channel] = (initiator << 8) | 0x0020;*/
MCD_dmaBar->taskControl[channel] =
(initiator << 8) | TASK_CTL_HIPRITSKEN | TASK_CTL_HLDINITNUM;
}
MCD_dmaBar->priority[channel] = (u8)priority & PRIORITY_PRI_MASK;
/* should be albe to handle this stuff with only one write to ts reg - tbd */
if (channel < 8 && channel >= 0)
{
MCD_dmaBar->taskSize0 &= ~(0xf << (7-channel)*4);
MCD_dmaBar->taskSize0 |= (xferSize & 3) << (((7 - channel)*4) + 2);
MCD_dmaBar->taskSize0 |= (xferSize & 3) << ((7 - channel)*4);
}
else
{
MCD_dmaBar->taskSize1 &= ~(0xf << (15-channel)*4);
MCD_dmaBar->taskSize1 |= (xferSize & 3) << (((15 - channel)*4) + 2);
MCD_dmaBar->taskSize1 |= (xferSize & 3) << ((15 - channel)*4);
}
/* setup task table flags/options which mostly control the line buffers */
MCD_taskTable[channel].FDTandFlags &= ~MCD_TT_FLAGS_MASK;
MCD_taskTable[channel].FDTandFlags |= (MCD_TT_FLAGS_MASK & flags);
if (flags & MCD_FECTX_DMA)
{
/* TDTStart and TDTEnd */
MCD_taskTable[channel].TDTstart = MCD_modelTaskTable[TASK_FECTX].TDTstart;
MCD_taskTable[channel].TDTend = MCD_modelTaskTable[TASK_FECTX].TDTend;
MCD_startDmaENetXmit(srcAddr, srcAddr, destAddr, MCD_taskTable, channel);
}
else if (flags & MCD_FECRX_DMA)
{
/* TDTStart and TDTEnd */
MCD_taskTable[channel].TDTstart = MCD_modelTaskTable[TASK_FECRX].TDTstart;
MCD_taskTable[channel].TDTend = MCD_modelTaskTable[TASK_FECRX].TDTend;
MCD_startDmaENetRcv(srcAddr, srcAddr, destAddr, MCD_taskTable, channel);
}
else if(flags & MCD_SINGLE_DMA)
{
/* this buffer descriptor is used for storing off initial parameters for later
progress query calculation and for the DMA to write the resulting checksum
The DMA does not use this to determine how to operate, that info is passed
with the init routine*/
MCD_relocBuffDesc[channel].srcAddr = srcAddr;
MCD_relocBuffDesc[channel].destAddr = destAddr;
MCD_relocBuffDesc[channel].lastDestAddr = destAddr; /* definitely not its final value */
MCD_relocBuffDesc[channel].dmaSize = dmaSize;
MCD_relocBuffDesc[channel].flags = 0; /* not used */
MCD_relocBuffDesc[channel].csumResult = 0; /* not used */
MCD_relocBuffDesc[channel].next = 0; /* not used */
/* Initialize the progress-querying stuff to show no progress:*/
((volatile int *)MCD_taskTable[channel].contextSaveSpace)[SRCPTR + CSAVE_OFFSET] = (int)srcAddr;
((volatile int *)MCD_taskTable[channel].contextSaveSpace)[DESTPTR + CSAVE_OFFSET] = (int)destAddr;
((volatile int *)MCD_taskTable[channel].contextSaveSpace)[DCOUNT + CSAVE_OFFSET] = 0;
((volatile int *)MCD_taskTable[channel].contextSaveSpace)[CURRBD + CSAVE_OFFSET] =
(u32) &(MCD_relocBuffDesc[channel]);
/* tbd - need to keep the user from trying to call the EU routine
when MCD_INCLUDE_EU is not defined */
if( funcDesc == MCD_FUNC_NOEU1 || funcDesc == MCD_FUNC_NOEU2)
{
/* TDTStart and TDTEnd */
MCD_taskTable[channel].TDTstart = MCD_modelTaskTable[TASK_SINGLENOEU].TDTstart;
MCD_taskTable[channel].TDTend = MCD_modelTaskTable[TASK_SINGLENOEU].TDTend;
MCD_startDmaSingleNoEu(srcAddr, srcIncr, destAddr, destIncr, dmaSize,
xferSizeIncr, flags, (int *)&(MCD_relocBuffDesc[channel]), cSave,
MCD_taskTable, channel);
}
else
{
/* TDTStart and TDTEnd */
MCD_taskTable[channel].TDTstart = MCD_modelTaskTable[TASK_SINGLEEU].TDTstart;
MCD_taskTable[channel].TDTend = MCD_modelTaskTable[TASK_SINGLEEU].TDTend;
MCD_startDmaSingleEu(srcAddr, srcIncr, destAddr, destIncr, dmaSize,
xferSizeIncr, flags, (int *)&(MCD_relocBuffDesc[channel]), cSave,
MCD_taskTable, channel);
}
}
else
{ /* chained DMAS */
/* Initialize the progress-querying stuff to show no progress:*/
#if 1 /* (!defined(MCD_NEED_ADDR_TRANS)) */
((volatile int *)MCD_taskTable[channel].contextSaveSpace)[SRCPTR + CSAVE_OFFSET]
= (int)((MCD_bufDesc*) srcAddr)->srcAddr;
((volatile int *)MCD_taskTable[channel].contextSaveSpace)[DESTPTR + CSAVE_OFFSET]
= (int)((MCD_bufDesc*) srcAddr)->destAddr;
#else /* if using address translation, need the virtual addr of the first buffdesc */
((volatile int *)MCD_taskTable[channel].contextSaveSpace)[SRCPTR + CSAVE_OFFSET]
= (int)((MCD_bufDesc*) srcAddrVirt)->srcAddr;
((volatile int *)MCD_taskTable[channel].contextSaveSpace)[DESTPTR + CSAVE_OFFSET]
= (int)((MCD_bufDesc*) srcAddrVirt)->destAddr;
#endif
((volatile int *)MCD_taskTable[channel].contextSaveSpace)[DCOUNT + CSAVE_OFFSET] = 0;
((volatile int *)MCD_taskTable[channel].contextSaveSpace)[CURRBD + CSAVE_OFFSET] = (u32) srcAddr;
if( funcDesc == MCD_FUNC_NOEU1 || funcDesc == MCD_FUNC_NOEU2)
{
/*TDTStart and TDTEnd*/
MCD_taskTable[channel].TDTstart = MCD_modelTaskTable[TASK_CHAINNOEU].TDTstart;
MCD_taskTable[channel].TDTend = MCD_modelTaskTable[TASK_CHAINNOEU].TDTend;
MCD_startDmaChainNoEu((int *)srcAddr, srcIncr, destIncr, xferSize,
xferSizeIncr, cSave, MCD_taskTable, channel);
}
else
{
/*TDTStart and TDTEnd*/
MCD_taskTable[channel].TDTstart = MCD_modelTaskTable[TASK_CHAINEU].TDTstart;
MCD_taskTable[channel].TDTend = MCD_modelTaskTable[TASK_CHAINEU].TDTend;
MCD_startDmaChainEu((int *)srcAddr, srcIncr, destIncr, xferSize,
xferSizeIncr, cSave, MCD_taskTable, channel);
}
}
MCD_chStatus[channel] = MCD_IDLE;
return(MCD_OK);
}
/************************ End of MCD_startDma() *********************/
/********************************************************************/
/* Function: MCD_XferProgrQuery
* Purpose: Returns progress of DMA on requested channel
* Arguments: channel - channel to retrieve progress for
* progRep - pointer to user supplied MCD_XferProg struct
* Returns: MCD_CHANNEL_INVALID if channel is invalid, else MCD_OK
*
* Notes:
* MCD_XferProgrQuery() upon completing or after aborting a DMA, or
* while the DMA is in progress, this function returns the first
* DMA-destination address not (or not yet) used in the DMA. When
* encountering a non-ready buffer descriptor, the information for
* the last completed descriptor is returned.
*
* MCD_XferProgQuery() has to avoid the possibility of getting
* partially-updated information in the event that we should happen
* to query DMA progress just as the DMA is updating it. It does that
* by taking advantage of the fact context is not saved frequently for
* the most part. We therefore read it at least twice until we get the
* same information twice in a row.
*
* Because a small, but not insignificant, amount of time is required
* to write out the progress-query information, especially upon
* completion of the DMA, it would be wise to guarantee some time lag
* between successive readings of the progress-query information.
*/
/*
* How many iterations of the loop below to execute to stabilize values
*/
#define STABTIME 0
int MCD_XferProgrQuery (int channel, MCD_XferProg *progRep)
{
MCD_XferProg prevRep;
int again; /* true if we are to try again to get consistent results */
int i; /* used as a time-waste counter */
int destDiffBytes; /* Total number of bytes that we think actually got xfered. */
int numIterations; /* number of iterations */
int bytesNotXfered; /* bytes that did not get xfered. */
s8 *LWAlignedInitDestAddr, *LWAlignedCurrDestAddr;
int subModVal, addModVal; /* Mode values to added and subtracted from the
final destAddr */
if((channel < 0) || (channel >= NCHANNELS))
return(MCD_CHANNEL_INVALID);
/* Read a trial value for the progress-reporting values*/
prevRep.lastSrcAddr =
(s8 *) ((volatile int*) MCD_taskTable[channel].contextSaveSpace)[SRCPTR + CSAVE_OFFSET];
prevRep.lastDestAddr =
(s8 *) ((volatile int*) MCD_taskTable[channel].contextSaveSpace)[DESTPTR + CSAVE_OFFSET];
prevRep.dmaSize = ((volatile int*) MCD_taskTable[channel].contextSaveSpace)[DCOUNT + CSAVE_OFFSET];
prevRep.currBufDesc =
(MCD_bufDesc*) ((volatile int*) MCD_taskTable[channel].contextSaveSpace)[CURRBD + CSAVE_OFFSET];
/* Repeatedly reread those values until they match previous values: */
do {
/* Waste a little bit of time to ensure stability: */
for (i = 0; i < STABTIME; i++)
i += i >> 2; /* make sure this loop does something so that it doesn't get optimized out */
/* Check them again: */
progRep->lastSrcAddr =
(s8 *) ((volatile int*) MCD_taskTable[channel].contextSaveSpace)[SRCPTR + CSAVE_OFFSET];
progRep->lastDestAddr =
(s8 *) ((volatile int*) MCD_taskTable[channel].contextSaveSpace)[DESTPTR + CSAVE_OFFSET];
progRep->dmaSize = ((volatile int*) MCD_taskTable[channel].contextSaveSpace)[DCOUNT + CSAVE_OFFSET];
progRep->currBufDesc =
(MCD_bufDesc*) ((volatile int*) MCD_taskTable[channel].contextSaveSpace)[CURRBD + CSAVE_OFFSET];
/* See if they match: */
if ( prevRep.lastSrcAddr != progRep->lastSrcAddr
|| prevRep.lastDestAddr != progRep->lastDestAddr
|| prevRep.dmaSize != progRep->dmaSize
|| prevRep.currBufDesc != progRep->currBufDesc)
{
/* If they don't match, remember previous values and try again:*/
prevRep.lastSrcAddr = progRep->lastSrcAddr;
prevRep.lastDestAddr = progRep->lastDestAddr;
prevRep.dmaSize = progRep->dmaSize;
prevRep.currBufDesc = progRep->currBufDesc;
again = MCD_TRUE;
}
else
again = MCD_FALSE;
} while (again == MCD_TRUE);
/* Update the dCount, srcAddr and destAddr */
/* To calculate dmaCount, we consider destination address. C
overs M1,P1,Z for destination */
switch(MCD_remVariants.remDestRsdIncr[channel]) {
case MINUS1:
subModVal = ((int)progRep->lastDestAddr) & ((MCD_remVariants.remXferSize[channel]) - 1);
addModVal = ((int)progRep->currBufDesc->destAddr) & ((MCD_remVariants.remXferSize[channel]) - 1);
LWAlignedInitDestAddr = (progRep->currBufDesc->destAddr) - addModVal;
LWAlignedCurrDestAddr = (progRep->lastDestAddr) - subModVal;
destDiffBytes = LWAlignedInitDestAddr - LWAlignedCurrDestAddr;
bytesNotXfered = (destDiffBytes/MCD_remVariants.remDestIncr[channel]) *
( MCD_remVariants.remDestIncr[channel]
+ MCD_remVariants.remXferSize[channel]);
progRep->dmaSize = destDiffBytes - bytesNotXfered + addModVal - subModVal;
break;
case ZERO:
progRep->lastDestAddr = progRep->currBufDesc->destAddr;
break;
case PLUS1:
/* This value has to be subtracted from the final calculated dCount. */
subModVal = ((int)progRep->currBufDesc->destAddr) & ((MCD_remVariants.remXferSize[channel]) - 1);
/* These bytes are already in lastDestAddr. */
addModVal = ((int)progRep->lastDestAddr) & ((MCD_remVariants.remXferSize[channel]) - 1);
LWAlignedInitDestAddr = (progRep->currBufDesc->destAddr) - subModVal;
LWAlignedCurrDestAddr = (progRep->lastDestAddr) - addModVal;
destDiffBytes = (progRep->lastDestAddr - LWAlignedInitDestAddr);
numIterations = ( LWAlignedCurrDestAddr - LWAlignedInitDestAddr)/MCD_remVariants.remDestIncr[channel];
bytesNotXfered = numIterations *
( MCD_remVariants.remDestIncr[channel]
- MCD_remVariants.remXferSize[channel]);
progRep->dmaSize = destDiffBytes - bytesNotXfered - subModVal;
break;
default:
break;
}
/* This covers M1,P1,Z for source */
switch(MCD_remVariants.remSrcRsdIncr[channel]) {
case MINUS1:
progRep->lastSrcAddr =
progRep->currBufDesc->srcAddr +
( MCD_remVariants.remSrcIncr[channel] *
(progRep->dmaSize/MCD_remVariants.remXferSize[channel]));
break;
case ZERO:
progRep->lastSrcAddr = progRep->currBufDesc->srcAddr;
break;
case PLUS1:
progRep->lastSrcAddr =
progRep->currBufDesc->srcAddr +
( MCD_remVariants.remSrcIncr[channel] *
(progRep->dmaSize/MCD_remVariants.remXferSize[channel]));
break;
default: break;
}
return(MCD_OK);
}
/******************* End of MCD_XferProgrQuery() ********************/
/********************************************************************/
/* MCD_resmActions() does the majority of the actions of a DMA resume.
* It is called from MCD_killDma() and MCD_resumeDma(). It has to be
* a separate function because the kill function has to negate the task
* enable before resuming it, but the resume function has to do nothing
* if there is no DMA on that channel (i.e., if the enable bit is 0).
*/
static void MCD_resmActions (int channel)
{
MCD_dmaBar->debugControl = DBG_CTL_DISABLE;
MCD_dmaBar->debugStatus = MCD_dmaBar->debugStatus;
MCD_dmaBar->ptdDebug = PTD_DBG_TSK_VLD_INIT; /* This register is selected to know
which initiator is actually asserted. */
if((MCD_dmaBar->ptdDebug >> channel ) & 0x1)
MCD_chStatus[channel] = MCD_RUNNING;
else
MCD_chStatus[channel] = MCD_IDLE;
}
/********************* End of MCD_resmActions() *********************/
/********************************************************************/
/* Function: MCD_killDma
* Purpose: Halt the DMA on the requested channel, without any
* intention of resuming the DMA.
* Arguments: channel - requested channel
* Returns: MCD_CHANNEL_INVALID if channel is invalid, else MCD_OK
*
* Notes:
* A DMA may be killed from any state, including paused state, and it
* always goes to the MCD_HALTED state even if it is killed while in
* the MCD_NO_DMA or MCD_IDLE states.
*/
int MCD_killDma (int channel)
{
/* MCD_XferProg progRep; */
if((channel < 0) || (channel >= NCHANNELS))
return(MCD_CHANNEL_INVALID);
MCD_dmaBar->taskControl[channel] = 0x0;
MCD_resumeDma (channel);
/*
* This must be after the write to the TCR so that the task doesn't
* start up again momentarily, and before the status assignment so
* as to override whatever MCD_resumeDma() may do to the channel
* status.
*/
MCD_chStatus[channel] = MCD_HALTED;
/*
* Update the current buffer descriptor's lastDestAddr field
*
* MCD_XferProgrQuery (channel, &progRep);
* progRep.currBufDesc->lastDestAddr = progRep.lastDestAddr;
*/
return(MCD_OK);
}
/************************ End of MCD_killDma() **********************/
/********************************************************************/
/* Function: MCD_continDma
* Purpose: Continue a DMA which as stopped due to encountering an
* unready buffer descriptor.
* Arguments: channel - channel to continue the DMA on
* Returns: MCD_CHANNEL_INVALID if channel is invalid, else MCD_OK
*
* Notes:
* This routine does not check to see if there is a task which can
* be continued. Also this routine should not be used with single DMAs.
*/
int MCD_continDma (int channel)
{
if((channel < 0) || (channel >= NCHANNELS))
return(MCD_CHANNEL_INVALID);
MCD_dmaBar->taskControl[channel] |= TASK_CTL_EN;
MCD_chStatus[channel] = MCD_RUNNING;
return(MCD_OK);
}
/********************** End of MCD_continDma() **********************/
/*********************************************************************
* MCD_pauseDma() and MCD_resumeDma() below use the DMA's debug unit
* to freeze a task and resume it. We freeze a task by breakpointing
* on the stated task. That is, not any specific place in the task,
* but any time that task executes. In particular, when that task
* executes, we want to freeze that task and only that task.
*
* The bits of the debug control register influence interrupts vs.
* breakpoints as follows:
* - Bits 14 and 0 enable or disable debug functions. If enabled, you
* will get the interrupt but you may or may not get a breakpoint.
* - Bits 2 and 1 decide whether you also get a breakpoint in addition
* to an interrupt.
*
* The debug unit can do these actions in response to either internally
* detected breakpoint conditions from the comparators, or in response
* to the external breakpoint pin, or both.
* - Bits 14 and 1 perform the above-described functions for
* internally-generated conditions, i.e., the debug comparators.
* - Bits 0 and 2 perform the above-described functions for external
* conditions, i.e., the breakpoint external pin.
*
* Note that, although you "always" get the interrupt when you turn
* the debug functions, the interrupt can nevertheless, if desired, be
* masked by the corresponding bit in the PTD's IMR. Note also that
* this means that bits 14 and 0 must enable debug functions before
* bits 1 and 2, respectively, have any effect.
*
* NOTE: It's extremely important to not pause more than one DMA channel
* at a time.
********************************************************************/
/********************************************************************/
/* Function: MCD_pauseDma
* Purpose: Pauses the DMA on a given channel (if any DMA is running
* on that channel).
* Arguments: channel
* Returns: MCD_CHANNEL_INVALID if channel is invalid, else MCD_OK
*/
int MCD_pauseDma (int channel)
{
/* MCD_XferProg progRep; */
if((channel < 0) || (channel >= NCHANNELS))
return(MCD_CHANNEL_INVALID);
if (MCD_dmaBar->taskControl[channel] & TASK_CTL_EN)
{
MCD_dmaBar->debugComp1 = channel;
MCD_dmaBar->debugControl = DBG_CTL_ENABLE | (1 << (channel + 16));
MCD_chStatus[channel] = MCD_PAUSED;
/*
* Update the current buffer descriptor's lastDestAddr field
*
* MCD_XferProgrQuery (channel, &progRep);
* progRep.currBufDesc->lastDestAddr = progRep.lastDestAddr;
*/
}
return(MCD_OK);
}
/************************* End of MCD_pauseDma() ********************/
/********************************************************************/
/* Function: MCD_resumeDma
* Purpose: Resumes the DMA on a given channel (if any DMA is
* running on that channel).
* Arguments: channel - channel on which to resume DMA
* Returns: MCD_CHANNEL_INVALID if channel is invalid, else MCD_OK
*/
int MCD_resumeDma (int channel)
{
if((channel < 0) || (channel >= NCHANNELS))
return(MCD_CHANNEL_INVALID);
if (MCD_dmaBar->taskControl[channel] & TASK_CTL_EN)
MCD_resmActions (channel);
return(MCD_OK);
}
/************************ End of MCD_resumeDma() ********************/
/********************************************************************/
/* Function: MCD_csumQuery
* Purpose: Provide the checksum after performing a non-chained DMA
* Arguments: channel - channel to report on
* csum - pointer to where to write the checksum/CRC
* Returns: MCD_ERROR if the channel is invalid, else MCD_OK
*
* Notes:
*
*/
int MCD_csumQuery (int channel, u32 *csum)
{
#ifdef MCD_INCLUDE_EU
if((channel < 0) || (channel >= NCHANNELS))
return(MCD_CHANNEL_INVALID);
*csum = MCD_relocBuffDesc[channel].csumResult;
return(MCD_OK);
#else
return(MCD_ERROR);
#endif
}
/*********************** End of MCD_resumeDma() *********************/
/********************************************************************/
/* Function: MCD_getCodeSize
* Purpose: Provide the size requirements of the microcoded tasks
* Returns: Size in bytes
*/
int MCD_getCodeSize(void)
{
#ifdef MCD_INCLUDE_EU
return(0x2b5c);
#else
return(0x173c);
#endif
}
/********************** End of MCD_getCodeSize() ********************/
/********************************************************************/
/* Function: MCD_getVersion
* Purpose: Provide the version string and number
* Arguments: longVersion - user supplied pointer to a pointer to a char
* which points to the version string
* Returns: Version number and version string (by reference)
*/
char MCD_versionString[] = "Multi-channel DMA API Alpha v0.3 (2004-04-26)";
#define MCD_REV_MAJOR 0x00
#define MCD_REV_MINOR 0x03
int MCD_getVersion(char **longVersion)
{
*longVersion = MCD_versionString;
return((MCD_REV_MAJOR << 8) | MCD_REV_MINOR);
}
/********************** End of MCD_getVersion() *********************/
/********************************************************************/
/* Private version of memcpy()
* Note that everything this is used for is longword-aligned.
*/
static void MCD_memcpy (int *dest, int *src, u32 size)
{
u32 i;
for (i = 0; i < size; i += sizeof(int), dest++, src++)
*dest = *src;
}
/********************************************************************/

5
BaS_gcc/mcdapi/MCD_progCheck.h Executable file
View File

@@ -0,0 +1,5 @@
/* This file is autogenerated. Do not change */
#define CURRBD 4
#define DCOUNT 6
#define DESTPTR 5
#define SRCPTR 7

2449
BaS_gcc/mcdapi/MCD_tasks.c Executable file

File diff suppressed because it is too large Load Diff

224
BaS_gcc/mcdapi/MCD_tasksInit.c Executable file
View File

@@ -0,0 +1,224 @@
/*
* File: MCD_tasksInit.c
* Purpose: Functions for initializing variable tables of different
* types of tasks.
*
* Notes:
*/
/*
* Do not edit!
*/
#include "MCD_dma.h"
extern dmaRegs *MCD_dmaBar;
/*
* Task 0
*/
void MCD_startDmaChainNoEu(int *currBD, short srcIncr, short destIncr, int xferSize, short xferSizeIncr, int *cSave, volatile TaskTableEntry *taskTable, int channel)
{
MCD_SET_VAR(taskTable+channel, 2, (u32)currBD); /* var[2] */
MCD_SET_VAR(taskTable+channel, 25, (u32)(0xe000 << 16) | (0xffff & srcIncr)); /* inc[1] */
MCD_SET_VAR(taskTable+channel, 24, (u32)(0xe000 << 16) | (0xffff & destIncr)); /* inc[0] */
MCD_SET_VAR(taskTable+channel, 11, (u32)xferSize); /* var[11] */
MCD_SET_VAR(taskTable+channel, 26, (u32)(0x2000 << 16) | (0xffff & xferSizeIncr)); /* inc[2] */
MCD_SET_VAR(taskTable+channel, 0, (u32)cSave); /* var[0] */
MCD_SET_VAR(taskTable+channel, 1, (u32)0x00000000); /* var[1] */
MCD_SET_VAR(taskTable+channel, 3, (u32)0x00000000); /* var[3] */
MCD_SET_VAR(taskTable+channel, 4, (u32)0x00000000); /* var[4] */
MCD_SET_VAR(taskTable+channel, 5, (u32)0x00000000); /* var[5] */
MCD_SET_VAR(taskTable+channel, 6, (u32)0x00000000); /* var[6] */
MCD_SET_VAR(taskTable+channel, 7, (u32)0x00000000); /* var[7] */
MCD_SET_VAR(taskTable+channel, 8, (u32)0x00000000); /* var[8] */
MCD_SET_VAR(taskTable+channel, 9, (u32)0x00000000); /* var[9] */
MCD_SET_VAR(taskTable+channel, 10, (u32)0x00000000); /* var[10] */
MCD_SET_VAR(taskTable+channel, 12, (u32)0x00000000); /* var[12] */
MCD_SET_VAR(taskTable+channel, 13, (u32)0x80000000); /* var[13] */
MCD_SET_VAR(taskTable+channel, 14, (u32)0x00000010); /* var[14] */
MCD_SET_VAR(taskTable+channel, 15, (u32)0x00000004); /* var[15] */
MCD_SET_VAR(taskTable+channel, 16, (u32)0x08000000); /* var[16] */
MCD_SET_VAR(taskTable+channel, 27, (u32)0x00000000); /* inc[3] */
MCD_SET_VAR(taskTable+channel, 28, (u32)0x80000000); /* inc[4] */
MCD_SET_VAR(taskTable+channel, 29, (u32)0x80000001); /* inc[5] */
MCD_SET_VAR(taskTable+channel, 30, (u32)0x40000000); /* inc[6] */
/* Set the task's Enable bit in its Task Control Register */
MCD_dmaBar->taskControl[channel] |= (u16)0x8000;
}
/*
* Task 1
*/
void MCD_startDmaSingleNoEu(char *srcAddr, short srcIncr, char *destAddr, short destIncr, int dmaSize, short xferSizeIncr, int flags, int *currBD, int *cSave, volatile TaskTableEntry *taskTable, int channel)
{
MCD_SET_VAR(taskTable+channel, 7, (u32)srcAddr); /* var[7] */
MCD_SET_VAR(taskTable+channel, 25, (u32)(0xe000 << 16) | (0xffff & srcIncr)); /* inc[1] */
MCD_SET_VAR(taskTable+channel, 2, (u32)destAddr); /* var[2] */
MCD_SET_VAR(taskTable+channel, 24, (u32)(0xe000 << 16) | (0xffff & destIncr)); /* inc[0] */
MCD_SET_VAR(taskTable+channel, 3, (u32)dmaSize); /* var[3] */
MCD_SET_VAR(taskTable+channel, 26, (u32)(0x2000 << 16) | (0xffff & xferSizeIncr)); /* inc[2] */
MCD_SET_VAR(taskTable+channel, 5, (u32)flags); /* var[5] */
MCD_SET_VAR(taskTable+channel, 1, (u32)currBD); /* var[1] */
MCD_SET_VAR(taskTable+channel, 0, (u32)cSave); /* var[0] */
MCD_SET_VAR(taskTable+channel, 4, (u32)0x00000000); /* var[4] */
MCD_SET_VAR(taskTable+channel, 6, (u32)0x00000000); /* var[6] */
MCD_SET_VAR(taskTable+channel, 8, (u32)0x00000000); /* var[8] */
MCD_SET_VAR(taskTable+channel, 9, (u32)0x00000004); /* var[9] */
MCD_SET_VAR(taskTable+channel, 10, (u32)0x08000000); /* var[10] */
MCD_SET_VAR(taskTable+channel, 27, (u32)0x00000000); /* inc[3] */
MCD_SET_VAR(taskTable+channel, 28, (u32)0x80000001); /* inc[4] */
MCD_SET_VAR(taskTable+channel, 29, (u32)0x40000000); /* inc[5] */
/* Set the task's Enable bit in its Task Control Register */
MCD_dmaBar->taskControl[channel] |= (u16)0x8000;
}
/*
* Task 2
*/
void MCD_startDmaChainEu(int *currBD, short srcIncr, short destIncr, int xferSize, short xferSizeIncr, int *cSave, volatile TaskTableEntry *taskTable, int channel)
{
MCD_SET_VAR(taskTable+channel, 3, (u32)currBD); /* var[3] */
MCD_SET_VAR(taskTable+channel, 25, (u32)(0xe000 << 16) | (0xffff & srcIncr)); /* inc[1] */
MCD_SET_VAR(taskTable+channel, 24, (u32)(0xe000 << 16) | (0xffff & destIncr)); /* inc[0] */
MCD_SET_VAR(taskTable+channel, 12, (u32)xferSize); /* var[12] */
MCD_SET_VAR(taskTable+channel, 26, (u32)(0x2000 << 16) | (0xffff & xferSizeIncr)); /* inc[2] */
MCD_SET_VAR(taskTable+channel, 0, (u32)cSave); /* var[0] */
MCD_SET_VAR(taskTable+channel, 1, (u32)0x00000000); /* var[1] */
MCD_SET_VAR(taskTable+channel, 2, (u32)0x00000000); /* var[2] */
MCD_SET_VAR(taskTable+channel, 4, (u32)0x00000000); /* var[4] */
MCD_SET_VAR(taskTable+channel, 5, (u32)0x00000000); /* var[5] */
MCD_SET_VAR(taskTable+channel, 6, (u32)0x00000000); /* var[6] */
MCD_SET_VAR(taskTable+channel, 7, (u32)0x00000000); /* var[7] */
MCD_SET_VAR(taskTable+channel, 8, (u32)0x00000000); /* var[8] */
MCD_SET_VAR(taskTable+channel, 9, (u32)0x00000000); /* var[9] */
MCD_SET_VAR(taskTable+channel, 10, (u32)0x00000000); /* var[10] */
MCD_SET_VAR(taskTable+channel, 11, (u32)0x00000000); /* var[11] */
MCD_SET_VAR(taskTable+channel, 13, (u32)0x00000000); /* var[13] */
MCD_SET_VAR(taskTable+channel, 14, (u32)0x80000000); /* var[14] */
MCD_SET_VAR(taskTable+channel, 15, (u32)0x00000010); /* var[15] */
MCD_SET_VAR(taskTable+channel, 16, (u32)0x00000001); /* var[16] */
MCD_SET_VAR(taskTable+channel, 17, (u32)0x00000004); /* var[17] */
MCD_SET_VAR(taskTable+channel, 18, (u32)0x08000000); /* var[18] */
MCD_SET_VAR(taskTable+channel, 27, (u32)0x00000000); /* inc[3] */
MCD_SET_VAR(taskTable+channel, 28, (u32)0x80000000); /* inc[4] */
MCD_SET_VAR(taskTable+channel, 29, (u32)0xc0000000); /* inc[5] */
MCD_SET_VAR(taskTable+channel, 30, (u32)0x80000001); /* inc[6] */
MCD_SET_VAR(taskTable+channel, 31, (u32)0x40000000); /* inc[7] */
/* Set the task's Enable bit in its Task Control Register */
MCD_dmaBar->taskControl[channel] |= (u16)0x8000;
}
/*
* Task 3
*/
void MCD_startDmaSingleEu(char *srcAddr, short srcIncr, char *destAddr, short destIncr, int dmaSize, short xferSizeIncr, int flags, int *currBD, int *cSave, volatile TaskTableEntry *taskTable, int channel)
{
MCD_SET_VAR(taskTable+channel, 8, (u32)srcAddr); /* var[8] */
MCD_SET_VAR(taskTable+channel, 25, (u32)(0xe000 << 16) | (0xffff & srcIncr)); /* inc[1] */
MCD_SET_VAR(taskTable+channel, 3, (u32)destAddr); /* var[3] */
MCD_SET_VAR(taskTable+channel, 24, (u32)(0xe000 << 16) | (0xffff & destIncr)); /* inc[0] */
MCD_SET_VAR(taskTable+channel, 4, (u32)dmaSize); /* var[4] */
MCD_SET_VAR(taskTable+channel, 26, (u32)(0x2000 << 16) | (0xffff & xferSizeIncr)); /* inc[2] */
MCD_SET_VAR(taskTable+channel, 6, (u32)flags); /* var[6] */
MCD_SET_VAR(taskTable+channel, 2, (u32)currBD); /* var[2] */
MCD_SET_VAR(taskTable+channel, 0, (u32)cSave); /* var[0] */
MCD_SET_VAR(taskTable+channel, 1, (u32)0x00000000); /* var[1] */
MCD_SET_VAR(taskTable+channel, 5, (u32)0x00000000); /* var[5] */
MCD_SET_VAR(taskTable+channel, 7, (u32)0x00000000); /* var[7] */
MCD_SET_VAR(taskTable+channel, 9, (u32)0x00000000); /* var[9] */
MCD_SET_VAR(taskTable+channel, 10, (u32)0x00000001); /* var[10] */
MCD_SET_VAR(taskTable+channel, 11, (u32)0x00000004); /* var[11] */
MCD_SET_VAR(taskTable+channel, 12, (u32)0x08000000); /* var[12] */
MCD_SET_VAR(taskTable+channel, 27, (u32)0x00000000); /* inc[3] */
MCD_SET_VAR(taskTable+channel, 28, (u32)0xc0000000); /* inc[4] */
MCD_SET_VAR(taskTable+channel, 29, (u32)0x80000000); /* inc[5] */
MCD_SET_VAR(taskTable+channel, 30, (u32)0x80000001); /* inc[6] */
MCD_SET_VAR(taskTable+channel, 31, (u32)0x40000000); /* inc[7] */
/* Set the task's Enable bit in its Task Control Register */
MCD_dmaBar->taskControl[channel] |= (u16)0x8000;
}
/*
* Task 4
*/
void MCD_startDmaENetRcv(char *bDBase, char *currBD, char *rcvFifoPtr, volatile TaskTableEntry *taskTable, int channel)
{
MCD_SET_VAR(taskTable+channel, 0, (u32)bDBase); /* var[0] */
MCD_SET_VAR(taskTable+channel, 3, (u32)currBD); /* var[3] */
MCD_SET_VAR(taskTable+channel, 6, (u32)rcvFifoPtr); /* var[6] */
MCD_SET_VAR(taskTable+channel, 1, (u32)0x00000000); /* var[1] */
MCD_SET_VAR(taskTable+channel, 2, (u32)0x00000000); /* var[2] */
MCD_SET_VAR(taskTable+channel, 4, (u32)0x00000000); /* var[4] */
MCD_SET_VAR(taskTable+channel, 5, (u32)0x00000000); /* var[5] */
MCD_SET_VAR(taskTable+channel, 7, (u32)0x00000000); /* var[7] */
MCD_SET_VAR(taskTable+channel, 8, (u32)0x00000000); /* var[8] */
MCD_SET_VAR(taskTable+channel, 9, (u32)0x0000ffff); /* var[9] */
MCD_SET_VAR(taskTable+channel, 10, (u32)0x30000000); /* var[10] */
MCD_SET_VAR(taskTable+channel, 11, (u32)0x0fffffff); /* var[11] */
MCD_SET_VAR(taskTable+channel, 12, (u32)0x00000008); /* var[12] */
MCD_SET_VAR(taskTable+channel, 24, (u32)0x00000000); /* inc[0] */
MCD_SET_VAR(taskTable+channel, 25, (u32)0x60000000); /* inc[1] */
MCD_SET_VAR(taskTable+channel, 26, (u32)0x20000004); /* inc[2] */
MCD_SET_VAR(taskTable+channel, 27, (u32)0x40000000); /* inc[3] */
/* Set the task's Enable bit in its Task Control Register */
MCD_dmaBar->taskControl[channel] |= (u16)0x8000;
}
/*
* Task 5
*/
void MCD_startDmaENetXmit(char *bDBase, char *currBD, char *xmitFifoPtr, volatile TaskTableEntry *taskTable, int channel)
{
MCD_SET_VAR(taskTable+channel, 0, (u32)bDBase); /* var[0] */
MCD_SET_VAR(taskTable+channel, 3, (u32)currBD); /* var[3] */
MCD_SET_VAR(taskTable+channel, 11, (u32)xmitFifoPtr); /* var[11] */
MCD_SET_VAR(taskTable+channel, 1, (u32)0x00000000); /* var[1] */
MCD_SET_VAR(taskTable+channel, 2, (u32)0x00000000); /* var[2] */
MCD_SET_VAR(taskTable+channel, 4, (u32)0x00000000); /* var[4] */
MCD_SET_VAR(taskTable+channel, 5, (u32)0x00000000); /* var[5] */
MCD_SET_VAR(taskTable+channel, 6, (u32)0x00000000); /* var[6] */
MCD_SET_VAR(taskTable+channel, 7, (u32)0x00000000); /* var[7] */
MCD_SET_VAR(taskTable+channel, 8, (u32)0x00000000); /* var[8] */
MCD_SET_VAR(taskTable+channel, 9, (u32)0x00000000); /* var[9] */
MCD_SET_VAR(taskTable+channel, 10, (u32)0x00000000); /* var[10] */
MCD_SET_VAR(taskTable+channel, 12, (u32)0x00000000); /* var[12] */
MCD_SET_VAR(taskTable+channel, 13, (u32)0x0000ffff); /* var[13] */
MCD_SET_VAR(taskTable+channel, 14, (u32)0xffffffff); /* var[14] */
MCD_SET_VAR(taskTable+channel, 15, (u32)0x00000004); /* var[15] */
MCD_SET_VAR(taskTable+channel, 16, (u32)0x00000008); /* var[16] */
MCD_SET_VAR(taskTable+channel, 24, (u32)0x00000000); /* inc[0] */
MCD_SET_VAR(taskTable+channel, 25, (u32)0x60000000); /* inc[1] */
MCD_SET_VAR(taskTable+channel, 26, (u32)0x40000000); /* inc[2] */
MCD_SET_VAR(taskTable+channel, 27, (u32)0xc000fffc); /* inc[3] */
MCD_SET_VAR(taskTable+channel, 28, (u32)0xe0000004); /* inc[4] */
MCD_SET_VAR(taskTable+channel, 29, (u32)0x80000000); /* inc[5] */
MCD_SET_VAR(taskTable+channel, 30, (u32)0x4000ffff); /* inc[6] */
MCD_SET_VAR(taskTable+channel, 31, (u32)0xe0000001); /* inc[7] */
/* Set the task's Enable bit in its Task Control Register */
MCD_dmaBar->taskControl[channel] |= (u16)0x8000;
}

44
BaS_gcc/mcdapi/MCD_tasksInit.h Executable file
View File

@@ -0,0 +1,44 @@
#ifndef MCD_TSK_INIT_H
#define MCD_TSK_INIT_H 1
/*
* Do not edit!
*/
/*
* Task 0
*/
void MCD_startDmaChainNoEu(int *currBD, short srcIncr, short destIncr, int xferSize, short xferSizeIncr, int *cSave, volatile TaskTableEntry *taskTable, int channel);
/*
* Task 1
*/
void MCD_startDmaSingleNoEu(char *srcAddr, short srcIncr, char *destAddr, short destIncr, int dmaSize, short xferSizeIncr, int flags, int *currBD, int *cSave, volatile TaskTableEntry *taskTable, int channel);
/*
* Task 2
*/
void MCD_startDmaChainEu(int *currBD, short srcIncr, short destIncr, int xferSize, short xferSizeIncr, int *cSave, volatile TaskTableEntry *taskTable, int channel);
/*
* Task 3
*/
void MCD_startDmaSingleEu(char *srcAddr, short srcIncr, char *destAddr, short destIncr, int dmaSize, short xferSizeIncr, int flags, int *currBD, int *cSave, volatile TaskTableEntry *taskTable, int channel);
/*
* Task 4
*/
void MCD_startDmaENetRcv(char *bDBase, char *currBD, char *rcvFifoPtr, volatile TaskTableEntry *taskTable, int channel);
/*
* Task 5
*/
void MCD_startDmaENetXmit(char *bDBase, char *currBD, char *xmitFifoPtr, volatile TaskTableEntry *taskTable, int channel);
#endif /* MCD_TSK_INIT_H */