started testing. BOOTP crashes at ip_send() ?

This commit is contained in:
Markus Fröschle
2013-12-24 12:38:36 +00:00
parent 7a33324a83
commit 4618246265
13 changed files with 771 additions and 1090 deletions

View File

@@ -40,16 +40,16 @@ typedef uint16_t ETH_FRM_TYPE;
/* Ethernet Frame Header definition */ /* Ethernet Frame Header definition */
typedef struct typedef struct
{ {
ETH_ADDR dest; ETH_ADDR dest;
ETH_ADDR src; ETH_ADDR src;
ETH_FRM_TYPE type; ETH_FRM_TYPE type;
} ETH_HDR; } ETH_HDR;
/* Ethernet Frame definition */ /* Ethernet Frame definition */
typedef struct typedef struct
{ {
ETH_HDR head; ETH_HDR head;
uint8_t* data; uint8_t* data;
} ETH_FRAME; } ETH_FRAME;
/*******************************************************************/ /*******************************************************************/

View File

@@ -1,62 +1,49 @@
/* /*
* File: nif.h * File: nif.h
* Purpose: Definition of a Network InterFace. * Purpose: Definition of a Network InterFace.
* *
* Notes: * Notes:
*/ */
#ifndef _NIF_H #ifndef _NIF_H
#define _NIF_H #define _NIF_H
/********************************************************************/ /*
* Maximum number of supported protoocls: IP, ARP, RARP
/* */
* Maximum number of supported protoocls: IP, ARP, RARP #define MAX_SUP_PROTO (3)
*/
#define MAX_SUP_PROTO (3) typedef struct NIF_t
{
typedef struct NIF_t ETH_ADDR hwa; /* ethernet card hardware address */
{ ETH_ADDR broadcast; /* broadcast address */
ETH_ADDR hwa; /* ethernet card hardware address */ int mtu; /* hardware maximum transmission unit */
ETH_ADDR broadcast; /* broadcast address */ int ch; /* ethernet channel associated with this NIF */
int mtu; /* hardware maximum transmission unit */
int ch; /* ethernet channel associated with this NIF */ struct SUP_PROTO_t
{
struct SUP_PROTO_t uint16_t protocol;
{ void (*handler)(struct NIF_t *, NBUF *);
uint16_t protocol; void *info;
void (*handler)(struct NIF_t *, NBUF *); } protocol[MAX_SUP_PROTO];
void *info;
} protocol[MAX_SUP_PROTO]; unsigned short num_protocol;
unsigned short num_protocol; int (*send)(struct NIF_t *, uint8_t *, uint8_t *, uint16_t, NBUF *);
int (*send)(struct NIF_t *, uint8_t *, uint8_t *, uint16_t, NBUF *); unsigned int f_rx;
unsigned int f_tx;
unsigned int f_rx; unsigned int f_rx_err;
unsigned int f_tx; unsigned int f_tx_err;
unsigned int f_rx_err; unsigned int f_err;
unsigned int f_tx_err; } NIF;
unsigned int f_err;
} NIF;
extern NIF *nif_init (NIF *);
/********************************************************************/ extern int nif_protocol_exist (NIF *, uint16_t);
extern void nif_protocol_handler (NIF *, uint16_t, NBUF *);
NIF * extern void *nif_get_protocol_info (NIF *, uint16_t);
nif_init (NIF *); extern int nif_bind_protocol (NIF *, uint16_t, void (*)(NIF *, NBUF *), void *);
int
nif_protocol_exist (NIF *, uint16_t); #endif /* _NIF_H */
void
nif_protocol_handler (NIF *, uint16_t, NBUF *);
void *
nif_get_protocol_info (NIF *, uint16_t);
int
nif_bind_protocol (NIF *, uint16_t, void (*)(NIF *, NBUF *), void *);
/********************************************************************/
#endif /* _NIF_H */

View File

@@ -13,450 +13,451 @@
static uint8_t *arp_find_pair(ARP_INFO *arptab, uint16_t protocol, uint8_t *hwa, uint8_t *pa) static uint8_t *arp_find_pair(ARP_INFO *arptab, uint16_t protocol, uint8_t *hwa, uint8_t *pa)
{ {
/* /*
* This function searches through the ARP table for the * This function searches through the ARP table for the
* specified <protocol,hwa> or <protocol,pa> address pair. * specified <protocol,hwa> or <protocol,pa> address pair.
* If it is found, then a a pointer to the non-specified * If it is found, then a a pointer to the non-specified
* address is returned. Otherwise NULL is returned. * address is returned. Otherwise NULL is returned.
* If you pass in <protocol,pa> then you get <hwa> out. * If you pass in <protocol,pa> then you get <hwa> out.
* If you pass in <protocol,hwa> then you get <pa> out. * If you pass in <protocol,hwa> then you get <pa> out.
*/ */
int slot, i, match = false; int slot, i, match = false;
uint8_t *rvalue; uint8_t *rvalue;
if (((hwa == 0) && (pa == 0)) || (arptab == 0)) if (((hwa == 0) && (pa == 0)) || (arptab == 0))
return NULL; return NULL;
rvalue = NULL; rvalue = NULL;
/* /*
* Check each protocol address for a match * Check each protocol address for a match
*/ */
for (slot = 0; slot < arptab->tab_size; slot++) for (slot = 0; slot < arptab->tab_size; slot++)
{ {
if ((arptab->table[slot].longevity != ARP_ENTRY_EMPTY) && if ((arptab->table[slot].longevity != ARP_ENTRY_EMPTY) &&
(arptab->table[slot].protocol == protocol)) (arptab->table[slot].protocol == protocol))
{ {
match = true; match = true;
if (hwa != 0) if (hwa != 0)
{ {
/* /*
* Check the Hardware Address field * Check the Hardware Address field
*/ */
rvalue = &arptab->table[slot].pa[0]; rvalue = &arptab->table[slot].pa[0];
for (i = 0; i < arptab->table[slot].hwa_size; i++) for (i = 0; i < arptab->table[slot].hwa_size; i++)
{ {
if (arptab->table[slot].hwa[i] != hwa[i]) if (arptab->table[slot].hwa[i] != hwa[i])
{ {
match = false; match = false;
break; break;
} }
} }
} }
else else
{ {
/* /*
* Check the Protocol Address field * Check the Protocol Address field
*/ */
rvalue = &arptab->table[slot].hwa[0]; rvalue = &arptab->table[slot].hwa[0];
for (i = 0; i < arptab->table[slot].pa_size; i++) for (i = 0; i < arptab->table[slot].pa_size; i++)
{ {
if (arptab->table[slot].pa[i] != pa[i]) if (arptab->table[slot].pa[i] != pa[i])
{ {
match = false; match = false;
break; break;
} }
} }
} }
if (match) if (match)
{ {
break; break;
} }
} }
} }
if (match) if (match)
return rvalue; return rvalue;
else else
return NULL; return NULL;
} }
void arp_merge(ARP_INFO *arptab, uint16_t protocol, int hwa_size, uint8_t *hwa, void arp_merge(ARP_INFO *arptab, uint16_t protocol, int hwa_size, uint8_t *hwa,
int pa_size, uint8_t *pa, int longevity) int pa_size, uint8_t *pa, int longevity)
{ {
/* /*
* This function merges an entry into the ARP table. If * This function merges an entry into the ARP table. If
* either piece is NULL, the function exits, otherwise * either piece is NULL, the function exits, otherwise
* the entry is merged or added, provided there is space. * the entry is merged or added, provided there is space.
*/ */
int i, slot; int i, slot;
uint8_t *ta; uint8_t *ta;
if ((hwa == NULL) || (pa == NULL) || (arptab == NULL) || if ((hwa == NULL) || (pa == NULL) || (arptab == NULL) ||
((longevity != ARP_ENTRY_TEMP) && ((longevity != ARP_ENTRY_TEMP) &&
(longevity != ARP_ENTRY_PERM))) (longevity != ARP_ENTRY_PERM)))
{ {
return; return;
} }
/* First search ARP table for existing entry */ /* First search ARP table for existing entry */
if ((ta = arp_find_pair(arptab,protocol,NULL,pa)) != 0) if ((ta = arp_find_pair(arptab,protocol,NULL,pa)) != 0)
{ {
/* Update hardware address */ /* Update hardware address */
for (i = 0; i < hwa_size; i++) for (i = 0; i < hwa_size; i++)
ta[i] = hwa[i]; ta[i] = hwa[i];
return; return;
} }
/* Next try to find an empty slot */
slot = -1;
for (i = 0; i < MAX_ARP_ENTRY; i++)
{
if (arptab->table[i].longevity == ARP_ENTRY_EMPTY)
{
slot = i;
break;
}
}
/* if no empty slot was found, pick a temp slot */ /* Next try to find an empty slot */
if (slot == -1) slot = -1;
{ for (i = 0; i < MAX_ARP_ENTRY; i++)
for (i = 0; i < MAX_ARP_ENTRY; i++) {
{ if (arptab->table[i].longevity == ARP_ENTRY_EMPTY)
if (arptab->table[i].longevity == ARP_ENTRY_TEMP) {
{ slot = i;
slot = i; break;
break; }
} }
}
}
/* if after all this, still no slot found, add in last slot */ /* if no empty slot was found, pick a temp slot */
if (slot == -1) if (slot == -1)
slot = (MAX_ARP_ENTRY - 1); {
for (i = 0; i < MAX_ARP_ENTRY; i++)
{
if (arptab->table[i].longevity == ARP_ENTRY_TEMP)
{
slot = i;
break;
}
}
}
/* add the entry into the slot */ /* if after all this, still no slot found, add in last slot */
arptab->table[slot].protocol = protocol; if (slot == -1)
slot = (MAX_ARP_ENTRY - 1);
arptab->table[slot].hwa_size = (uint8_t) hwa_size; /* add the entry into the slot */
for (i = 0; i < hwa_size; i++) arptab->table[slot].protocol = protocol;
arptab->table[slot].hwa[i] = hwa[i];
arptab->table[slot].pa_size = (uint8_t) pa_size; arptab->table[slot].hwa_size = (uint8_t) hwa_size;
for (i = 0; i < pa_size; i++) for (i = 0; i < hwa_size; i++)
arptab->table[slot].pa[i] = pa[i]; arptab->table[slot].hwa[i] = hwa[i];
arptab->table[slot].longevity = longevity; arptab->table[slot].pa_size = (uint8_t) pa_size;
for (i = 0; i < pa_size; i++)
arptab->table[slot].pa[i] = pa[i];
arptab->table[slot].longevity = longevity;
} }
void arp_remove(ARP_INFO *arptab, uint16_t protocol, uint8_t *hwa, uint8_t *pa) void arp_remove(ARP_INFO *arptab, uint16_t protocol, uint8_t *hwa, uint8_t *pa)
{ {
/* /*
* This function removes an entry from the ARP table. The * This function removes an entry from the ARP table. The
* ARP table is searched according to the non-NULL address * ARP table is searched according to the non-NULL address
* that is provided. * that is provided.
*/ */
int slot, i, match; int slot, i, match;
if (((hwa == 0) && (pa == 0)) || (arptab == 0)) if (((hwa == 0) && (pa == 0)) || (arptab == 0))
return; return;
/* check each hardware adress for a match */ /* check each hardware adress for a match */
for (slot = 0; slot < arptab->tab_size; slot++) for (slot = 0; slot < arptab->tab_size; slot++)
{ {
if ((arptab->table[slot].longevity != ARP_ENTRY_EMPTY) && if ((arptab->table[slot].longevity != ARP_ENTRY_EMPTY) &&
(arptab->table[slot].protocol == protocol)) (arptab->table[slot].protocol == protocol))
{ {
match = true; match = true;
if (hwa != 0) if (hwa != 0)
{ {
/* Check Hardware Address field */ /* Check Hardware Address field */
for (i = 0; i < arptab->table[slot].hwa_size; i++) for (i = 0; i < arptab->table[slot].hwa_size; i++)
{ {
if (arptab->table[slot].hwa[i] != hwa[i]) if (arptab->table[slot].hwa[i] != hwa[i])
{ {
match = false; match = false;
break; break;
} }
} }
} }
else else
{ {
/* Check Protocol Address field */ /* Check Protocol Address field */
for (i = 0; i < arptab->table[slot].pa_size; i++) for (i = 0; i < arptab->table[slot].pa_size; i++)
{ {
if (arptab->table[slot].pa[i] != pa[i]) if (arptab->table[slot].pa[i] != pa[i])
{ {
match = false; match = false;
break; break;
} }
} }
} }
if (match) if (match)
{ {
for (i = 0; i < arptab->table[slot].hwa_size; i++) for (i = 0; i < arptab->table[slot].hwa_size; i++)
arptab->table[slot].hwa[i] = 0; arptab->table[slot].hwa[i] = 0;
for (i = 0; i < arptab->table[slot].pa_size; i++) for (i = 0; i < arptab->table[slot].pa_size; i++)
arptab->table[slot].pa[i] = 0; arptab->table[slot].pa[i] = 0;
arptab->table[slot].longevity = ARP_ENTRY_EMPTY; arptab->table[slot].longevity = ARP_ENTRY_EMPTY;
break; break;
} }
} }
} }
} }
void arp_request(NIF *nif, uint8_t *pa) void arp_request(NIF *nif, uint8_t *pa)
{ {
/* /*
* This function broadcasts an ARP request for the protocol * This function broadcasts an ARP request for the protocol
* address "pa" * address "pa"
*/ */
uint8_t *addr; uint8_t *addr;
NBUF *pNbuf; NBUF *pNbuf;
arp_frame_hdr *arpframe; arp_frame_hdr *arpframe;
int i, result; int i, result;
pNbuf = nbuf_alloc();
if (pNbuf == NULL)
{
#if defined(DEBUG_PRINT)
printf("ARP: arp_request couldn't allocate Tx buffer\n");
#endif
return;
}
arpframe = (arp_frame_hdr *)&pNbuf->data[ARP_HDR_OFFSET]; xprintf("%s\r\n", __FUNCTION__);
/* Build the ARP request packet */ pNbuf = nbuf_alloc();
arpframe->ar_hrd = ETHERNET; if (pNbuf == NULL)
arpframe->ar_pro = ETH_FRM_IP; {
arpframe->ar_hln = 6; xprintf("ARP: arp_request couldn't allocate Tx buffer\n");
arpframe->ar_pln = 4; return;
arpframe->opcode = ARP_REQUEST; }
addr = &nif->hwa[0]; arpframe = (arp_frame_hdr *)&pNbuf->data[ARP_HDR_OFFSET];
for (i = 0; i < 6; i++)
arpframe->ar_sha[i] = addr[i];
addr = ip_get_myip(nif_get_protocol_info(nif,ETH_FRM_IP)); /* Build the ARP request packet */
for (i = 0; i < 4; i++) arpframe->ar_hrd = ETHERNET;
arpframe->ar_spa[i] = addr[i]; arpframe->ar_pro = ETH_FRM_IP;
arpframe->ar_hln = 6;
arpframe->ar_pln = 4;
arpframe->opcode = ARP_REQUEST;
for (i = 0; i < 6; i++) addr = &nif->hwa[0];
arpframe->ar_tha[i] = 0x00; for (i = 0; i < 6; i++)
arpframe->ar_sha[i] = addr[i];
for (i = 0; i < 4; i++) addr = ip_get_myip(nif_get_protocol_info(nif,ETH_FRM_IP));
arpframe->ar_tpa[i] = pa[i]; for (i = 0; i < 4; i++)
arpframe->ar_spa[i] = addr[i];
pNbuf->length = ARP_HDR_LEN; for (i = 0; i < 6; i++)
arpframe->ar_tha[i] = 0x00;
/* Send the ARP request */ for (i = 0; i < 4; i++)
result = nif->send(nif, nif->broadcast, nif->hwa, ETH_FRM_ARP, pNbuf); arpframe->ar_tpa[i] = pa[i];
if (result == 0) pNbuf->length = ARP_HDR_LEN;
nbuf_free(pNbuf);
/* Send the ARP request */
result = nif->send(nif, nif->broadcast, nif->hwa, ETH_FRM_ARP, pNbuf);
if (result == 0)
nbuf_free(pNbuf);
} }
static int arp_resolve_pa(NIF *nif, uint16_t protocol, uint8_t *pa, uint8_t **ha) static int arp_resolve_pa(NIF *nif, uint16_t protocol, uint8_t *pa, uint8_t **ha)
{ {
/* /*
* This function accepts a pointer to a protocol address and * This function accepts a pointer to a protocol address and
* searches the ARP table for a hardware address match. If no * searches the ARP table for a hardware address match. If no
* no match found, false is returned. * no match found, false is returned.
*/ */
ARP_INFO *arptab; ARP_INFO *arptab;
if ((pa == NULL) || (nif == NULL) || (protocol == 0)) if ((pa == NULL) || (nif == NULL) || (protocol == 0))
return 0; return 0;
arptab = nif_get_protocol_info (nif,ETH_FRM_ARP); arptab = nif_get_protocol_info (nif,ETH_FRM_ARP);
*ha = arp_find_pair(arptab,protocol,0,pa); *ha = arp_find_pair(arptab,protocol,0,pa);
if (*ha == NULL) if (*ha == NULL)
return 0; return 0;
else else
return 1; return 1;
} }
uint8_t *arp_resolve(NIF *nif, uint16_t protocol, uint8_t *pa) uint8_t *arp_resolve(NIF *nif, uint16_t protocol, uint8_t *pa)
{ {
int i; int i;
uint8_t *hwa; uint8_t *hwa;
/* /*
* Check to see if the necessary MAC-to-IP translation information * Check to see if the necessary MAC-to-IP translation information
* is in table already * is in table already
*/ */
if (arp_resolve_pa (nif, protocol, pa, &hwa)) if (arp_resolve_pa (nif, protocol, pa, &hwa))
return hwa; return hwa;
/* /*
* Ok, it's not, so we need to try to obtain it by broadcasting * Ok, it's not, so we need to try to obtain it by broadcasting
* an ARP request. Hopefully the desired host is listening and * an ARP request. Hopefully the desired host is listening and
* will respond with it's MAC address * will respond with it's MAC address
*/ */
for (i = 0; i < 3; i++) for (i = 0; i < 3; i++)
{ {
arp_request (nif, pa); arp_request (nif, pa);
timer_set_secs(TIMER_NETWORK, ARP_TIMEOUT); timer_set_secs(TIMER_NETWORK, ARP_TIMEOUT);
while (timer_get_reference(TIMER_NETWORK)) while (timer_get_reference(TIMER_NETWORK))
{ {
if (arp_resolve_pa (nif, protocol, pa, &hwa)) if (arp_resolve_pa (nif, protocol, pa, &hwa))
return hwa; return hwa;
} }
} }
return NULL; return NULL;
} }
void arp_init(ARP_INFO *arptab) void arp_init(ARP_INFO *arptab)
{ {
int slot, i; int slot, i;
arptab->tab_size = MAX_ARP_ENTRY; arptab->tab_size = MAX_ARP_ENTRY;
for (slot = 0; slot < arptab->tab_size; slot++) for (slot = 0; slot < arptab->tab_size; slot++)
{ {
for (i = 0; i < MAX_HWA_SIZE; i++) for (i = 0; i < MAX_HWA_SIZE; i++)
arptab->table[slot].hwa[i] = 0; arptab->table[slot].hwa[i] = 0;
for (i = 0; i < MAX_PA_SIZE; i++) for (i = 0; i < MAX_PA_SIZE; i++)
arptab->table[slot].pa[i] = 0; arptab->table[slot].pa[i] = 0;
arptab->table[slot].longevity = ARP_ENTRY_EMPTY; arptab->table[slot].longevity = ARP_ENTRY_EMPTY;
arptab->table[slot].hwa_size = 0; arptab->table[slot].hwa_size = 0;
arptab->table[slot].pa_size = 0; arptab->table[slot].pa_size = 0;
} }
} }
void arp_handler(NIF *nif, NBUF *pNbuf) void arp_handler(NIF *nif, NBUF *pNbuf)
{ {
/* /*
* ARP protocol handler * ARP protocol handler
*/ */
uint8_t *addr; uint8_t *addr;
ARP_INFO *arptab; ARP_INFO *arptab;
int longevity; int longevity;
arp_frame_hdr *rx_arpframe, *tx_arpframe; arp_frame_hdr *rx_arpframe, *tx_arpframe;
arptab = nif_get_protocol_info(nif, ETH_FRM_ARP); arptab = nif_get_protocol_info(nif, ETH_FRM_ARP);
rx_arpframe = (arp_frame_hdr *) &pNbuf->data[pNbuf->offset]; rx_arpframe = (arp_frame_hdr *) &pNbuf->data[pNbuf->offset];
/* /*
* Check for an appropriate ARP packet * Check for an appropriate ARP packet
*/ */
if ((pNbuf->length < ARP_HDR_LEN) || if ((pNbuf->length < ARP_HDR_LEN) ||
(rx_arpframe->ar_hrd != ETHERNET) || (rx_arpframe->ar_hrd != ETHERNET) ||
(rx_arpframe->ar_hln != 6) || (rx_arpframe->ar_hln != 6) ||
(rx_arpframe->ar_pro != ETH_FRM_IP) || (rx_arpframe->ar_pro != ETH_FRM_IP) ||
(rx_arpframe->ar_pln != 4)) (rx_arpframe->ar_pln != 4))
{ {
nbuf_free(pNbuf); nbuf_free(pNbuf);
return; return;
} }
/* /*
* Check to see if it was addressed to me - if it was, keep this * Check to see if it was addressed to me - if it was, keep this
* ARP entry in the table permanently; if not, mark it so that it * ARP entry in the table permanently; if not, mark it so that it
* can be displaced later if necessary * can be displaced later if necessary
*/ */
addr = ip_get_myip(nif_get_protocol_info(nif,ETH_FRM_IP)); addr = ip_get_myip(nif_get_protocol_info(nif,ETH_FRM_IP));
if ((rx_arpframe->ar_tpa[0] == addr[0]) && if ((rx_arpframe->ar_tpa[0] == addr[0]) &&
(rx_arpframe->ar_tpa[1] == addr[1]) && (rx_arpframe->ar_tpa[1] == addr[1]) &&
(rx_arpframe->ar_tpa[2] == addr[2]) && (rx_arpframe->ar_tpa[2] == addr[2]) &&
(rx_arpframe->ar_tpa[3] == addr[3]) ) (rx_arpframe->ar_tpa[3] == addr[3]) )
{ {
longevity = ARP_ENTRY_PERM; longevity = ARP_ENTRY_PERM;
} }
else else
longevity = ARP_ENTRY_TEMP; longevity = ARP_ENTRY_TEMP;
/* /*
* Add ARP info into the table * Add ARP info into the table
*/ */
arp_merge(arptab, arp_merge(arptab,
rx_arpframe->ar_pro, rx_arpframe->ar_pro,
rx_arpframe->ar_hln, rx_arpframe->ar_hln,
&rx_arpframe->ar_sha[0], &rx_arpframe->ar_sha[0],
rx_arpframe->ar_pln, rx_arpframe->ar_pln,
&rx_arpframe->ar_spa[0], &rx_arpframe->ar_spa[0],
longevity longevity
); );
switch (rx_arpframe->opcode) switch (rx_arpframe->opcode)
{ {
case ARP_REQUEST: case ARP_REQUEST:
/* /*
* Check to see if request is directed to me * Check to see if request is directed to me
*/ */
if ((rx_arpframe->ar_tpa[0] == addr[0]) && if ((rx_arpframe->ar_tpa[0] == addr[0]) &&
(rx_arpframe->ar_tpa[1] == addr[1]) && (rx_arpframe->ar_tpa[1] == addr[1]) &&
(rx_arpframe->ar_tpa[2] == addr[2]) && (rx_arpframe->ar_tpa[2] == addr[2]) &&
(rx_arpframe->ar_tpa[3] == addr[3]) ) (rx_arpframe->ar_tpa[3] == addr[3]) )
{ {
/* /*
* Reuse the current network buffer to assemble an ARP reply * Reuse the current network buffer to assemble an ARP reply
*/ */
tx_arpframe = (arp_frame_hdr *)&pNbuf->data[ARP_HDR_OFFSET]; tx_arpframe = (arp_frame_hdr *)&pNbuf->data[ARP_HDR_OFFSET];
/* /*
* Build new ARP frame from the received data * Build new ARP frame from the received data
*/ */
tx_arpframe->ar_hrd = ETHERNET; tx_arpframe->ar_hrd = ETHERNET;
tx_arpframe->ar_pro = ETH_FRM_IP; tx_arpframe->ar_pro = ETH_FRM_IP;
tx_arpframe->ar_hln = 6; tx_arpframe->ar_hln = 6;
tx_arpframe->ar_pln = 4; tx_arpframe->ar_pln = 4;
tx_arpframe->opcode = ARP_REPLY; tx_arpframe->opcode = ARP_REPLY;
tx_arpframe->ar_tha[0] = rx_arpframe->ar_sha[0]; tx_arpframe->ar_tha[0] = rx_arpframe->ar_sha[0];
tx_arpframe->ar_tha[1] = rx_arpframe->ar_sha[1]; tx_arpframe->ar_tha[1] = rx_arpframe->ar_sha[1];
tx_arpframe->ar_tha[2] = rx_arpframe->ar_sha[2]; tx_arpframe->ar_tha[2] = rx_arpframe->ar_sha[2];
tx_arpframe->ar_tha[3] = rx_arpframe->ar_sha[3]; tx_arpframe->ar_tha[3] = rx_arpframe->ar_sha[3];
tx_arpframe->ar_tha[4] = rx_arpframe->ar_sha[4]; tx_arpframe->ar_tha[4] = rx_arpframe->ar_sha[4];
tx_arpframe->ar_tha[5] = rx_arpframe->ar_sha[5]; tx_arpframe->ar_tha[5] = rx_arpframe->ar_sha[5];
tx_arpframe->ar_tpa[0] = rx_arpframe->ar_spa[0]; tx_arpframe->ar_tpa[0] = rx_arpframe->ar_spa[0];
tx_arpframe->ar_tpa[1] = rx_arpframe->ar_spa[1]; tx_arpframe->ar_tpa[1] = rx_arpframe->ar_spa[1];
tx_arpframe->ar_tpa[2] = rx_arpframe->ar_spa[2]; tx_arpframe->ar_tpa[2] = rx_arpframe->ar_spa[2];
tx_arpframe->ar_tpa[3] = rx_arpframe->ar_spa[3]; tx_arpframe->ar_tpa[3] = rx_arpframe->ar_spa[3];
/* /*
* Now copy in the new information * Now copy in the new information
*/ */
addr = &nif->hwa[0]; addr = &nif->hwa[0];
tx_arpframe->ar_sha[0] = addr[0]; tx_arpframe->ar_sha[0] = addr[0];
tx_arpframe->ar_sha[1] = addr[1]; tx_arpframe->ar_sha[1] = addr[1];
tx_arpframe->ar_sha[2] = addr[2]; tx_arpframe->ar_sha[2] = addr[2];
tx_arpframe->ar_sha[3] = addr[3]; tx_arpframe->ar_sha[3] = addr[3];
tx_arpframe->ar_sha[4] = addr[4]; tx_arpframe->ar_sha[4] = addr[4];
tx_arpframe->ar_sha[5] = addr[5]; tx_arpframe->ar_sha[5] = addr[5];
addr = ip_get_myip(nif_get_protocol_info(nif,ETH_FRM_IP)); addr = ip_get_myip(nif_get_protocol_info(nif,ETH_FRM_IP));
tx_arpframe->ar_spa[0] = addr[0]; tx_arpframe->ar_spa[0] = addr[0];
tx_arpframe->ar_spa[1] = addr[1]; tx_arpframe->ar_spa[1] = addr[1];
tx_arpframe->ar_spa[2] = addr[2]; tx_arpframe->ar_spa[2] = addr[2];
tx_arpframe->ar_spa[3] = addr[3]; tx_arpframe->ar_spa[3] = addr[3];
/* /*
* Save the length of my packet in the buffer structure * Save the length of my packet in the buffer structure
*/ */
pNbuf->length = ARP_HDR_LEN; pNbuf->length = ARP_HDR_LEN;
nif->send(nif,
&tx_arpframe->ar_tha[0],
&tx_arpframe->ar_sha[0],
ETH_FRM_ARP,
pNbuf);
}
else
nbuf_free(pNbuf);
break;
case ARP_REPLY:
/*
* The ARP Reply case is already taken care of
*/
default:
nbuf_free(pNbuf);
break;
}
return; nif->send(nif,
&tx_arpframe->ar_tha[0],
&tx_arpframe->ar_sha[0],
ETH_FRM_ARP,
pNbuf);
}
else
nbuf_free(pNbuf);
break;
case ARP_REPLY:
/*
* The ARP Reply case is already taken care of
*/
default:
nbuf_free(pNbuf);
break;
}
return;
} }

View File

@@ -56,15 +56,22 @@ void bootp_request(NIF *nif, uint8_t *pa)
nbuf->length = BOOTP_PACKET_LEN; nbuf->length = BOOTP_PACKET_LEN;
/* setup reply handler */
udp_bind_port(BOOTP_CLIENT_PORT, bootp_handler);
for (i = 0; i < MAX_TRIES; i++) for (i = 0; i < MAX_TRIES; i++)
{ {
/* Send the BOOTP request */ /* Send the BOOTP request */
result = udp_send(connection.nif, broadcast, BOOTP_CLIENT_PORT, result = udp_send(connection.nif, broadcast, BOOTP_CLIENT_PORT,
BOOTP_SERVER_PORT, nbuf); BOOTP_SERVER_PORT, nbuf);
xprintf("sent bootp request\r\n");
if (result == true) if (result == true)
break; break;
} }
/* release handler */
udp_free_port(BOOTP_CLIENT_PORT);
if (result == 0) if (result == 0)
nbuf_free(nbuf); nbuf_free(nbuf);
} }
@@ -85,6 +92,7 @@ void bootp_handler(NIF *nif, NBUF *nbuf)
if (rx_p->type == BOOTP_TYPE_BOOTREPLY && rx_p->xid == XID) if (rx_p->type == BOOTP_TYPE_BOOTREPLY && rx_p->xid == XID)
{ {
xprintf("received bootp reply\r\n");
/* seems to be valid */ /* seems to be valid */
} }

View File

@@ -1025,7 +1025,7 @@ void fec1_tx_frame(void)
* 1 success * 1 success
* 0 otherwise * 0 otherwise
*/ */
int fec_send (uint8_t ch, NIF *nif, uint8_t *dst, uint8_t *src, uint16_t type, NBUF *nbuf) int fec_send(uint8_t ch, NIF *nif, uint8_t *dst, uint8_t *src, uint16_t type, NBUF *nbuf)
{ {
FECBD *pTxBD; FECBD *pTxBD;

View File

@@ -147,20 +147,21 @@ int ip_send(NIF *nif, uint8_t *dest, uint8_t *src, uint8_t protocol, NBUF *pNbuf
/* /*
* Determine the hardware address of the recipient * Determine the hardware address of the recipient
*/ */
route = ip_resolve_route(nif, dest); IP_ADDR bc = { 255, 255, 255, 255};
if (route == NULL) if (memcmp(bc, dest, 4) != 0)
{ {
xprintf("Unable to locate %d.%d.%d.%d\n", route = ip_resolve_route(nif, dest);
dest[0], dest[1], dest[2], dest[3]); if (route == NULL)
return 0; {
} xprintf("Unable to locate %d.%d.%d.%d\n",
dest[0], dest[1], dest[2], dest[3]);
return 0;
}
}
else
route = bc;
return nif->send(nif, return nif->send(nif, route, &nif->hwa[0], ETH_FRM_IP, pNbuf);
route,
&nif->hwa[0],
ETH_FRM_IP,
pNbuf
);
} }
#if defined(DEBUG_PRINT) #if defined(DEBUG_PRINT)

View File

@@ -1,213 +1,211 @@
/* /*
* File: nbuf.c * File: nbuf.c
* Purpose: Implementation of network buffer scheme. * Purpose: Implementation of network buffer scheme.
* *
* Notes: * Notes:
*/ */
#include "queue.h" #include "queue.h"
#include "net.h" #include "net.h"
#include "driver_mem.h" #include "driver_mem.h"
#include "exceptions.h" #include "exceptions.h"
#include "bas_types.h" #include "bas_types.h"
#include "bas_printf.h" #include "bas_printf.h"
/* /*
* Queues used for network buffer storage * Queues used for network buffer storage
*/ */
QUEUE nbuf_queue[NBUF_MAXQ]; QUEUE nbuf_queue[NBUF_MAXQ];
/* /*
* Some devices require line-aligned buffers. In order to accomplish * Some devices require line-aligned buffers. In order to accomplish
* this, the nbuf data is over-allocated and adjusted. The following * this, the nbuf data is over-allocated and adjusted. The following
* array keeps track of the original data pointer returned by malloc * array keeps track of the original data pointer returned by malloc
*/ */
uint8_t *unaligned_buffers[NBUF_MAX]; uint8_t *unaligned_buffers[NBUF_MAX];
/* /*
* Initialize all the network buffer queues * Initialize all the network buffer queues
* *
* Return Value: * Return Value:
* 0 success * 0 success
* 1 failure * 1 failure
*/ */
int nbuf_init(void) int nbuf_init(void)
{ {
int i; int i;
NBUF *nbuf; NBUF *nbuf;
for (i=0; i<NBUF_MAXQ; ++i) for (i=0; i<NBUF_MAXQ; ++i)
{ {
/* Initialize all the queues */ /* Initialize all the queues */
queue_init(&nbuf_queue[i]); queue_init(&nbuf_queue[i]);
} }
#ifdef DEBUG_PRINT #ifdef DEBUG_PRINT
printf("Creating %d net buffers of %d bytes\n",NBUF_MAX,NBUF_SZ); printf("Creating %d net buffers of %d bytes\n",NBUF_MAX,NBUF_SZ);
#endif #endif
for (i = 0; i < NBUF_MAX; ++i) for (i = 0; i < NBUF_MAX; ++i)
{ {
/* Allocate memory for the network buffer structure */ /* Allocate memory for the network buffer structure */
nbuf = (NBUF *) driver_mem_alloc(sizeof(NBUF)); nbuf = (NBUF *) driver_mem_alloc(sizeof(NBUF));
if (!nbuf) if (!nbuf)
{ {
return 1; xprintf("failed to allocate nbuf\r\n");
} return 1;
}
/* Allocate memory for the actual data */
unaligned_buffers[i] = driver_mem_alloc(NBUF_SZ + 16); /* Allocate memory for the actual data */
nbuf->data = (uint8_t *)((uint32_t)(unaligned_buffers[i] + 15) & 0xFFFFFFF0); unaligned_buffers[i] = driver_mem_alloc(NBUF_SZ + 16);
if (!nbuf->data) nbuf->data = (uint8_t *)((uint32_t)(unaligned_buffers[i] + 15) & 0xFFFFFFF0);
{ if (!nbuf->data)
return 1; {
} return 1;
}
/* Initialize the network buffer */
nbuf->offset = 0; /* Initialize the network buffer */
nbuf->length = 0; nbuf->offset = 0;
nbuf->length = 0;
/* Add the network buffer to the free list */
queue_add(&nbuf_queue[NBUF_FREE], (QNODE *)nbuf); /* Add the network buffer to the free list */
} queue_add(&nbuf_queue[NBUF_FREE], (QNODE *)nbuf);
}
#ifdef DEBUG_PRINT
printf("NBUF allocation complete\n"); xprintf("NBUF allocation complete\n");
nbuf_debug_dump();
#endif return 0;
}
return 0;
} /*
* Return all the allocated memory to the heap
/* */
* Return all the allocated memory to the heap void nbuf_flush(void)
*/ {
void nbuf_flush(void) NBUF *nbuf;
{ int i, level = set_ipl(7);
NBUF *nbuf; int n = 0;
int i, level = set_ipl(7);
int n = 0; for (i = 0; i < NBUF_MAX; ++i)
driver_mem_free((uint8_t *) unaligned_buffers[i]);
for (i = 0; i < NBUF_MAX; ++i)
driver_mem_free((uint8_t *) unaligned_buffers[i]); for (i = 0; i < NBUF_MAXQ; ++i)
{
for (i = 0; i < NBUF_MAXQ; ++i) while ((nbuf = (NBUF *) queue_remove(&nbuf_queue[i])) != NULL)
{ {
while ((nbuf = (NBUF *) queue_remove(&nbuf_queue[i])) != NULL) driver_mem_free(nbuf);
{ ++n;
driver_mem_free(nbuf); }
++n; }
} set_ipl(level);
} }
set_ipl(level);
} /*
* Allocate a network buffer from the free list
/* *
* Allocate a network buffer from the free list * Return Value:
* * Pointer to a free network buffer
* Return Value: * NULL if none are available
* Pointer to a free network buffer */
* NULL if none are available NBUF *nbuf_alloc(void)
*/ {
NBUF *nbuf_alloc(void) NBUF *nbuf;
{ int level = set_ipl(7);
NBUF *nbuf;
int level = set_ipl(7); nbuf = (NBUF *) queue_remove(&nbuf_queue[NBUF_FREE]);
set_ipl(level);
nbuf = (NBUF *) queue_remove(&nbuf_queue[NBUF_FREE]);
set_ipl(level); return nbuf;
}
return nbuf;
} /*
* Add the specified network buffer back to the free list
/* *
* Add the specified network buffer back to the free list * Parameters:
* * nbuf Buffer to add back to the free list
* Parameters: */
* nbuf Buffer to add back to the free list void nbuf_free(NBUF *nbuf)
*/ {
void nbuf_free(NBUF *nbuf) int level = set_ipl(7);
{
int level = set_ipl(7); nbuf->offset = 0;
nbuf->length = NBUF_SZ;
nbuf->offset = 0; queue_add(&nbuf_queue[NBUF_FREE],(QNODE *)nbuf);
nbuf->length = NBUF_SZ;
queue_add(&nbuf_queue[NBUF_FREE],(QNODE *)nbuf); set_ipl(level);
}
set_ipl(level);
} /*
* Remove a network buffer from the specified queue
/* *
* Remove a network buffer from the specified queue * Parameters:
* * q The index that identifies the queue to pull the buffer from
* Parameters: */
* q The index that identifies the queue to pull the buffer from NBUF *nbuf_remove(int q)
*/ {
NBUF *nbuf_remove(int q) NBUF *nbuf;
{ int level = set_ipl(7);
NBUF *nbuf;
int level = set_ipl(7); nbuf = (NBUF *) queue_remove(&nbuf_queue[q]);
set_ipl(level);
nbuf = (NBUF *) queue_remove(&nbuf_queue[q]);
set_ipl(level); return nbuf;
}
return nbuf;
} /*
* Add a network buffer to the specified queue
/* *
* Add a network buffer to the specified queue * Parameters:
* * q The index that identifies the queue to add the buffer to
* Parameters: */
* q The index that identifies the queue to add the buffer to void nbuf_add(int q, NBUF *nbuf)
*/ {
void nbuf_add(int q, NBUF *nbuf) int level = set_ipl(7);
{ queue_add(&nbuf_queue[q],(QNODE *)nbuf);
int level = set_ipl(7); set_ipl(level);
queue_add(&nbuf_queue[q],(QNODE *)nbuf); }
set_ipl(level);
} /*
* Put all the network buffers back into the free list
/* */
* Put all the network buffers back into the free list void nbuf_reset(void)
*/ {
void nbuf_reset(void) NBUF *nbuf;
{ int i, level = set_ipl(7);
NBUF *nbuf;
int i, level = set_ipl(7); for (i = 1; i < NBUF_MAXQ; ++i)
{
for (i = 1; i < NBUF_MAXQ; ++i) while ((nbuf = nbuf_remove(i)) != NULL)
{ nbuf_free(nbuf);
while ((nbuf = nbuf_remove(i)) != NULL) }
nbuf_free(nbuf); set_ipl(level);
} }
set_ipl(level);
} /*
* Display all the nbuf queues
/* */
* Display all the nbuf queues void nbuf_debug_dump(void)
*/ {
void nbuf_debug_dump(void) #ifdef DEBUG
{ NBUF *nbuf;
#ifdef DEBUG int i, j, level;
NBUF *nbuf;
int i, j, level; level = set_ipl(7);
level = set_ipl(7); for (i = 0; i < NBUF_MAXQ; ++i)
{
for (i = 0; i < NBUF_MAXQ; ++i) printf("\n\nQueue #%d\n\n",i);
{ printf("\tBuffer Location\tOffset\tLength\n");
printf("\n\nQueue #%d\n\n",i); printf("--------------------------------------\n");
printf("\tBuffer Location\tOffset\tLength\n"); j = 0;
printf("--------------------------------------\n"); nbuf = (NBUF *)queue_peek(&nbuf_queue[i]);
j = 0; while (nbuf != NULL)
nbuf = (NBUF *)queue_peek(&nbuf_queue[i]); {
while (nbuf != NULL) printf("%d\t 0x%08x\t0x%04x\t0x%04x\n",j++,nbuf->data,
{ nbuf->offset,
printf("%d\t 0x%08x\t0x%04x\t0x%04x\n",j++,nbuf->data, nbuf->length);
nbuf->offset, nbuf = (NBUF *)nbuf->node.next;
nbuf->length); }
nbuf = (NBUF *)nbuf->node.next; }
}
} set_ipl(level);
#endif
set_ipl(level); }
#endif
}

View File

@@ -14,105 +14,105 @@
int nif_protocol_exist(NIF *nif, uint16_t protocol) int nif_protocol_exist(NIF *nif, uint16_t protocol)
{ {
/* /*
* This function searches the list of supported protocols * This function searches the list of supported protocols
* on the particular NIF and if a protocol handler exists, * on the particular NIF and if a protocol handler exists,
* true is returned. This function is useful for network cards * true is returned. This function is useful for network cards
* that needn't read in the entire frame but can discard frames * that needn't read in the entire frame but can discard frames
* arbitrarily. * arbitrarily.
*/ */
int index; int index;
for (index = 0; index < nif->num_protocol; ++index) for (index = 0; index < nif->num_protocol; ++index)
{ {
if (nif->protocol[index].protocol == protocol) if (nif->protocol[index].protocol == protocol)
{ {
return true; return true;
} }
} }
return false; return false;
} }
void nif_protocol_handler(NIF *nif, uint16_t protocol, NBUF *pNbuf) void nif_protocol_handler(NIF *nif, uint16_t protocol, NBUF *pNbuf)
{ {
/* /*
* This function searches the list of supported protocols * This function searches the list of supported protocols
* on the particular NIF and if a protocol handler exists, * on the particular NIF and if a protocol handler exists,
* the protocol handler is invoked. This routine called by * the protocol handler is invoked. This routine called by
* network device driver after receiving a frame. * network device driver after receiving a frame.
*/ */
int index; int index;
for (index = 0; index < nif->num_protocol; ++index) for (index = 0; index < nif->num_protocol; ++index)
{ {
if (nif->protocol[index].protocol == protocol) if (nif->protocol[index].protocol == protocol)
nif->protocol[index].handler(nif,pNbuf); nif->protocol[index].handler(nif,pNbuf);
} }
} }
void *nif_get_protocol_info (NIF *nif, uint16_t protocol) void *nif_get_protocol_info (NIF *nif, uint16_t protocol)
{ {
/* /*
* This function searches the list of supported protocols * This function searches the list of supported protocols
* on the particular NIF and returns a pointer to the * on the particular NIF and returns a pointer to the
* config info for 'protocol', otherwise NULL is returned. * config info for 'protocol', otherwise NULL is returned.
*/ */
int index; int index;
for (index = 0; index < nif->num_protocol; ++index) for (index = 0; index < nif->num_protocol; ++index)
{ {
if (nif->protocol[index].protocol == protocol) if (nif->protocol[index].protocol == protocol)
return (void *)nif->protocol[index].info; return (void *)nif->protocol[index].info;
} }
return (void *)0; return (void *)0;
} }
int nif_bind_protocol (NIF *nif, uint16_t protocol, int nif_bind_protocol (NIF *nif, uint16_t protocol,
void (*handler)(NIF *,NBUF *), void (*handler)(NIF *,NBUF *),
void *info) void *info)
{ {
/* /*
* This function registers 'protocol' as a supported * This function registers 'protocol' as a supported
* protocol in 'nif'. * protocol in 'nif'.
*/ */
if (nif->num_protocol < (MAX_SUP_PROTO - 1)) if (nif->num_protocol < (MAX_SUP_PROTO - 1))
{ {
nif->protocol[nif->num_protocol].protocol = protocol; nif->protocol[nif->num_protocol].protocol = protocol;
nif->protocol[nif->num_protocol].handler = (void(*)(NIF*,NBUF*))handler; nif->protocol[nif->num_protocol].handler = (void(*)(NIF*,NBUF*))handler;
nif->protocol[nif->num_protocol].info = info; nif->protocol[nif->num_protocol].info = info;
++nif->num_protocol; ++nif->num_protocol;
return true; return true;
} }
return false; return false;
} }
NIF *nif_init (NIF *nif) NIF *nif_init (NIF *nif)
{ {
int i; int i;
for (i = 0; i < ETH_ADDR_LEN; ++i) for (i = 0; i < ETH_ADDR_LEN; ++i)
{ {
nif->hwa[i] = 0; nif->hwa[i] = 0;
nif->broadcast[i] = 0xFF; nif->broadcast[i] = 0xFF;
} }
for (i = 0; i < MAX_SUP_PROTO; ++i) for (i = 0; i < MAX_SUP_PROTO; ++i)
{ {
nif->protocol[i].protocol = 0; nif->protocol[i].protocol = 0;
nif->protocol[i].handler = 0; nif->protocol[i].handler = 0;
nif->protocol[i].info = 0; nif->protocol[i].info = 0;
} }
nif->num_protocol = 0; nif->num_protocol = 0;
nif->mtu = 0; nif->mtu = 0;
nif->ch = 0; nif->ch = 0;
nif->send = 0; nif->send = 0;
nif->f_rx = 0; nif->f_rx = 0;
nif->f_tx = 0; nif->f_tx = 0;
nif->f_rx_err = 0; nif->f_rx_err = 0;
nif->f_tx_err = 0; nif->f_tx_err = 0;
nif->f_err = 0; nif->f_err = 0;
return nif; return nif;
} }

View File

@@ -42,6 +42,7 @@
#include "eth.h" #include "eth.h"
#include "nbuf.h" #include "nbuf.h"
#include "nif.h" #include "nif.h"
#include "fec.h"
/* imported routines */ /* imported routines */
extern int mmu_init(); extern int mmu_init();
@@ -366,6 +367,19 @@ void BaS(void)
xprintf("BaS initialization finished, enable interrupts\r\n"); xprintf("BaS initialization finished, enable interrupts\r\n");
enable_coldfire_interrupts(); enable_coldfire_interrupts();
nbuf_init();
uint8_t mac[6] = {0x00, 0x04, 0x9f, 0x01, 0x01, 0x01}; /* this is a Freescale MAC address */
uint8_t bc[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; /* this is a Freescale MAC address */
fec_eth_setup(0, FEC_MODE_MII, FEC_MII_100BASE_TX, FEC_MII_FULL_DUPLEX, mac);
nif_init(&nif1);
nif1.mtu = ETH_MTU;
nif1.send = fec0_send;
memcpy(nif1.hwa, mac, 6);
memcpy(nif1.broadcast, bc, 6);
bootp_request(&nif1, 0);
xprintf("call EmuTOS\r\n"); xprintf("call EmuTOS\r\n");
ROM_HEADER* os_header = (ROM_HEADER*)TOS; ROM_HEADER* os_header = (ROM_HEADER*)TOS;
os_header->initial_pc(); os_header->initial_pc();

View File

@@ -307,7 +307,7 @@ static int init_count = 0;
int driver_mem_init(void) int driver_mem_init(void)
{ {
if (! init_count == 0) if (init_count == 0)
{ {
#ifdef USE_RADEON_MEMORY #ifdef USE_RADEON_MEMORY
driver_mem_buffer = (void *) offscreen_reserved(); driver_mem_buffer = (void *) offscreen_reserved();

View File

@@ -48,6 +48,7 @@
#include "dma.h" #include "dma.h"
#include "mod_devicetable.h" #include "mod_devicetable.h"
#include "pci_ids.h" #include "pci_ids.h"
#include "driver_mem.h"
#include "usb.h" #include "usb.h"
#define UNUSED(x) (void)(x) /* Unused variable */ #define UNUSED(x) (void)(x) /* Unused variable */
@@ -1126,6 +1127,7 @@ void initialize_hardware(void)
} }
#endif /* MACHINE_FIREBEE */ #endif /* MACHINE_FIREBEE */
driver_mem_init();
init_pci(); init_pci();
/* do not try to init USB for now on the Firebee, it hangs the machine */ /* do not try to init USB for now on the Firebee, it hangs the machine */

View File

@@ -1,343 +0,0 @@
/*
* driver_mem.c
*
* based from Emutos / BDOS
*
* Copyright (c) 2001 Lineo, Inc.
*
* Authors: Karl T. Braun, Martin Doering, Laurent Vogel
*
* This file is distributed under the GPL, version 2 or at your
* option any later version.
*/
#include <stdint.h>
#include "bas_string.h"
#include "bas_printf.h"
#include "usb.h"
#include "exceptions.h" /* set_ipl() */
#if MACHINE_FIREBEE
#include "firebee.h"
#elif MACHINE_M5484LITE
#include "m5484l.h"
#endif
#ifndef FALSE
#define FALSE 0
#endif
#ifndef TRUE
#define TRUE 1
#endif
#undef DRIVER_MEM_DEBUG
#ifdef DRIVER_MEM_DEBUG
#define dbg(fmt, args...) xprintf(fmt, ##args)
#else
#define dbg(fmt, args...)
#endif
extern void *info_fvdi;
extern long offscren_reserved(void);
extern uint8_t driver_mem[DRIVER_MEM_SIZE]; /* defined in linker control file */
/* MD - Memory Descriptor */
#define MD struct _md_
MD
{
MD *m_link;
long m_start;
long m_length;
void *m_own;
};
/* MPB - Memory Partition Block */
#define MPB struct _mpb
MPB
{
MD *mp_mfl;
MD *mp_mal;
MD *mp_rover;
};
#define MAXMD 256
static MD tab_md[MAXMD];
static MPB pmd;
static void *xmgetblk(void)
{
int i;
for (i = 0; i < MAXMD; i++)
{
if (tab_md[i].m_own == NULL)
{
tab_md[i].m_own = (void*)1L;
return(&tab_md[i]);
}
}
return NULL;
}
static void xmfreblk(void *m)
{
int i = (int)(((long) m - (long) tab_md) / sizeof(MD));
if ((i > 0) && (i < MAXMD))
{
tab_md[i].m_own = NULL;
}
}
static MD *ffit(long amount, MPB *mp)
{
MD *p, *q, *p1; /* free list is composed of MD's */
int maxflg;
long maxval;
if (amount != -1)
{
amount += 15; /* 16 bytes alignment */
amount &= 0xFFFFFFF0;
}
if ((q = mp->mp_rover) == 0) /* get rotating pointer */
{
return 0;
}
maxval = 0;
maxflg = ((amount == -1) ? TRUE : FALSE) ;
p = q->m_link; /* start with next MD */
do /* search the list for an MD with enough space */
{
if (p == 0)
{
/* at end of list, wrap back to start */
q = (MD *) &mp->mp_mfl; /* q => mfl field */
p = q->m_link; /* p => 1st MD */
}
if ((!maxflg) && (p->m_length >= amount))
{
/* big enough */
if (p->m_length == amount)
{
q->m_link = p->m_link; /* take the whole thing */
}
else
{
/*
* break it up - 1st allocate a new
* MD to describe the remainder
*/
p1 = xmgetblk();
if (p1 == NULL)
{
return(NULL);
}
/* init new MD */
p1->m_length = p->m_length - amount;
p1->m_start = p->m_start + amount;
p1->m_link = p->m_link;
p->m_length = amount; /* adjust allocated block */
q->m_link = p1;
}
/* link allocate block into allocated list,
mark owner of block, & adjust rover */
p->m_link = mp->mp_mal;
mp->mp_mal = p;
mp->mp_rover = (q == (MD *) &mp->mp_mfl ? q->m_link : q);
return(p); /* got some */
}
else if (p->m_length > maxval)
maxval = p->m_length;
p = ( q=p )->m_link;
} while(q != mp->mp_rover);
/*
* return either the max, or 0 (error)
*/
if (maxflg)
{
maxval -= 15; /* 16 bytes alignment */
if (maxval < 0)
{
maxval = 0;
}
else
{
maxval &= 0xFFFFFFF0;
}
}
return(maxflg ? (MD *) maxval : 0);
}
static void freeit(MD *m, MPB *mp)
{
MD *p, *q;
q = 0;
for (p = mp->mp_mfl; p ; p = (q = p) -> m_link)
{
if (m->m_start <= p->m_start)
{
break;
}
}
m->m_link = p;
if (q)
{
q->m_link = m;
}
else
{
mp->mp_mfl = m;
}
if (!mp->mp_rover)
{
mp->mp_rover = m;
}
if (p)
{
if (m->m_start + m->m_length == p->m_start)
{
/* join to higher neighbor */
m->m_length += p->m_length;
m->m_link = p->m_link;
if (p == mp->mp_rover)
{
mp->mp_rover = m;
}
xmfreblk(p);
}
}
if (q)
{
if (q->m_start + q->m_length == m->m_start)
{
/* join to lower neighbor */
q->m_length += m->m_length;
q->m_link = m->m_link;
if (m == mp->mp_rover)
{
mp->mp_rover = q;
}
xmfreblk(m);
}
}
}
int driver_mem_free(void *addr)
{
int level;
MD *p, **q;
MPB *mpb;
mpb = &pmd;
level = set_ipl(7);
for(p = *(q = &mpb->mp_mal); p; p = *(q = &p->m_link))
{
if ((long) addr == p->m_start)
{
break;
}
}
if (!p)
{
set_ipl(level);
return(-1);
}
*q = p->m_link;
freeit(p, mpb);
set_ipl(level);
dbg("driver_mem_free(0x%08X)\r\n", addr);
return(0);
}
void *driver_mem_alloc(long amount)
{
void *ret = NULL;
int level;
MD *m;
if (amount == -1L)
{
return((void *)ffit(-1L, &pmd));
}
if (amount <= 0 )
{
return(0);
}
if ((amount & 1))
{
amount++;
}
level = set_ipl(7);
m = ffit(amount, &pmd);
if (m != NULL)
{
ret = (void *)m->m_start;
}
set_ipl(level);
dbg("driver_mem_alloc(%d) = 0x%08X\r\n", amount, ret);
return(ret);
}
int usb_mem_init(void)
{
#ifdef USE_RADEON_MEMORY
driver_mem_buffer = (void *) offscren_reserved();
if (driver_mem_buffer == NULL)
#endif
memset(driver_mem_buffer, 0, DRIVER_MEM_BUFFER_SIZE);
if (driver_mem_buffer == NULL)
{
return(-1);
}
pmd.mp_mfl = pmd.mp_rover = &tab_md[0];
tab_md[0].m_link = (MD *) NULL;
tab_md[0].m_start = ((long) driver_mem_buffer + 15) & ~15;
tab_md[0].m_length = DRIVER_MEM_BUFFER_SIZE;
tab_md[0].m_own = (void *) 1L;
pmd.mp_mal = (MD *) NULL;
memset(driver_mem_buffer, 0, tab_md[0].m_length);
dbg("driver memory buffer at 0x%08X size %d\r\n", tab_md[0].m_start, tab_md[0].m_length);
return(0);
}
void usb_mem_stop(void)
{
#ifndef CONFIG_USB_MEM_NO_CACHE
#ifdef USE_RADEON_MEMORY
if (driver_mem_buffer == (void *) offscren_reserved())
return;
#endif
#endif
}

View File

@@ -55,6 +55,19 @@ void *memset(void *s, int c, size_t n)
} }
int memcmp(const char *s1, const char *s2, size_t max)
{
int i;
int cmp;
for (i = 0; i < max; i++)
{
cmp = (*s1 - *s2);
if (cmp != 0) return cmp;
}
return cmp;
}
int strncmp(const char *s1, const char *s2, size_t max) int strncmp(const char *s1, const char *s2, size_t max)
{ {
int i; int i;