#define RINFO_ONLY #include "x86debug.h" #include "radeonfb.h" #include "bas_printf.h" #include "bas_string.h" #include "util.h" #include "driver_mem.h" #include "x86emu.h" #include "pci.h" #include "pci_ids.h" #define USE_SDRAM #define DIRECT_ACCESS #define MEM_WB(where, what) wrb(where, what) #define MEM_WW(where, what) wrw(where, what) #define MEM_WL(where, what) wrl(where, what) #define MEM_RB(where) rdb(where) #define MEM_RW(where) rdw(where) #define MEM_RL(where) rdl(where) #define PCI_VGA_RAM_IMAGE_START 0xC0000 #define PCI_RAM_IMAGE_START 0xD0000 #define SYS_BIOS 0xF0000 #define SIZE_EMU 0x100000 typedef struct { long ident; union { long l; short i[2]; char c[4]; } v; } COOKIE; struct rom_header { uint16_t signature; uint8_t size; uint8_t init[3]; uint8_t reserved[0x12]; uint16_t data; }; struct pci_data { uint32_t signature; uint16_t vendor; uint16_t device; uint16_t reserved_1; uint16_t dlen; uint8_t drevision; uint8_t class_lo; uint16_t class_hi; uint16_t ilen; uint16_t irevision; uint8_t type; uint8_t indicator; uint16_t reserved_2; }; static struct radeonfb_info *rinfo_biosemu; uint16_t offset_port; uint32_t offset_mem; static uint32_t offset_io; static uint32_t config_address_reg; extern int x86_pcibios_emulator(); extern COOKIE *get_cookie(long id); extern short restart, os_magic; X86EMU_sysEnv _X86EMU_env; /* general software interrupt handler */ uint32_t getIntVect(int num) { return MEM_RW(num << 2) + (MEM_RW((num << 2) + 2) << 4); } /* FixME: There is already a push_word() in the emulator */ void pushw(uint16_t val) { X86_ESP -= 2; MEM_WW(((uint32_t) X86_SS << 4) + X86_SP, val); } int run_bios_int(int num) { uint32_t eflags; eflags = X86_EFLAGS; pushw(eflags); pushw(X86_CS); pushw(X86_IP); X86_CS = MEM_RW((num << 2) + 2); X86_IP = MEM_RW(num << 2); return 1; } uint8_t inb(uint16_t port) { uint8_t val = 0; if ((port >= offset_port) && (port <= offset_port + 0xFF)) { val = * (uint8_t *) (offset_io + (uint32_t) port); //dbg("%s: inb(0x%x) = 0x%x\r\n", __FUNCTION__, port, val); } return val; } uint16_t inw(uint16_t port) { uint16_t val = 0; if ((port >= offset_port) && (port <= offset_port + 0xFF)) { val = swpw(*(uint16_t *)(offset_io + (uint32_t) port)); //dbg("inw(0x%x) = 0x%x\r\n", port, val); } return val; } uint32_t inl(uint16_t port) { uint32_t val = 0; if ((port >= offset_port) && (port <= offset_port + 0xFF)) { val = swpl(*(uint32_t *)(offset_io + (uint32_t) port)); //dbg("0x%x) = 0x%x\r\n", port, val); } else if (port == 0xCF8) { val = config_address_reg; dbg("inl(0x%x) = 0x%x\r\n", port, val); } else if ((port == 0xCFC) && ((config_address_reg & 0x80000000) != 0)) { dbg("%s: PCI BIOS access to register %x\r\n", __FUNCTION__, config_address_reg); switch (config_address_reg & 0xFC) { case PCIIDR: val = ((uint32_t) rinfo_biosemu->chipset << 16) + PCI_VENDOR_ID_ATI; break; case PCIBAR1: val = (uint32_t) offset_port + 1; break; default: val = pci_read_config_longword(rinfo_biosemu->handle, config_address_reg & 0xFC); break; } dbg("inl(0x%x) = 0x%x\r\n", port, val); } return val; } void outb(uint8_t val, uint16_t port) { if ((port >= offset_port) && (port <= offset_port + 0xFF)) { //dbg("outb(0x%x, 0x%x)\r\n", port, val); *(uint8_t *)(offset_io + (uint32_t) port) = val; } } void outw(uint16_t val, uint16_t port) { if ((port >= offset_port) && (port <= offset_port + 0xFF)) { //dbg("outw(0x%x, 0x%x)\r\n", port, val); *(uint16_t *)(offset_io + (uint32_t) port) = swpw(val); } } void outl(uint32_t val, uint16_t port) { if ((port >= offset_port) && (port <= offset_port + 0xFF)) { //dbg("outl(0x%x, 0x%x)\r\n", port, val); *(uint32_t *)(offset_io + (uint32_t) port) = swpl(val); } else if (port == 0xCF8) { dbg("outl(0x%x, 0x%x)\r\n", port, val); config_address_reg = val; } else if ((port == 0xCFC) && ((config_address_reg & 0x80000000) !=0)) { if ((config_address_reg & 0xFC) == PCIBAR1) offset_port = (uint16_t)val & 0xFFFC; else { dbg("outl(0x%x, 0x%x) to PCI config space\r\n", port, val); pci_write_config_longword(rinfo_biosemu->handle, config_address_reg & 0xFC, val); } } } /* Interrupt multiplexer */ void do_int(int num) { int ret = 0; switch (num) { #ifndef _PC case 0x10: case 0x42: case 0x6D: if (getIntVect(num) == 0x0000) dbg("uninitialised int vector\r\n"); if (getIntVect(num) == 0xFF065) { //ret = int42_handler(); ret = 1; } break; #endif case 0x15: //ret = int15_handler(); ret = 1; break; case 0x16: //ret = int16_handler(); ret = 0; break; case 0x1A: ret = x86_pcibios_emulator(); ret = 1; break; case 0xe6: //ret = intE6_handler(); ret = 0; break; default: break; } if (!ret) ret = run_bios_int(num); } #if 0 void reset_int_vect(void) { /* * This table is normally located at 0xF000:0xF0A4. However, int 0x42, * function 0 (Mode Set) expects it (or a copy) somewhere in the bottom * 64kB. Note that because this data doesn't survive POST, int 0x42 should * only be used during EGA/VGA BIOS initialisation. */ static const uint8_t VideoParms[] = { /* Timing for modes 0x00 & 0x01 */ 0x38, 0x28, 0x2d, 0x0a, 0x1f, 0x06, 0x19, 0x1c, 0x02, 0x07, 0x06, 0x07, 0x00, 0x00, 0x00, 0x00, /* Timing for modes 0x02 & 0x03 */ 0x71, 0x50, 0x5a, 0x0a, 0x1f, 0x06, 0x19, 0x1c, 0x02, 0x07, 0x06, 0x07, 0x00, 0x00, 0x00, 0x00, /* Timing for modes 0x04, 0x05 & 0x06 */ 0x38, 0x28, 0x2d, 0x0a, 0x7f, 0x06, 0x64, 0x70, 0x02, 0x01, 0x06, 0x07, 0x00, 0x00, 0x00, 0x00, /* Timing for mode 0x07 */ 0x61, 0x50, 0x52, 0x0f, 0x19, 0x06, 0x19, 0x19, 0x02, 0x0d, 0x0b, 0x0c, 0x00, 0x00, 0x00, 0x00, /* Display page lengths in little endian order */ 0x00, 0x08, /* Modes 0x00 and 0x01 */ 0x00, 0x10, /* Modes 0x02 and 0x03 */ 0x00, 0x40, /* Modes 0x04 and 0x05 */ 0x00, 0x40, /* Modes 0x06 and 0x07 */ /* Number of columns for each mode */ 40, 40, 80, 80, 40, 40, 80, 80, /* CGA Mode register value for each mode */ 0x2c, 0x28, 0x2d, 0x29, 0x2a, 0x2e, 0x1e, 0x29, /* Padding */ 0x00, 0x00, 0x00, 0x00 }; int i; for(i = 0; i < sizeof(VideoParms); i++) MEM_WB(i + (0x1000 - sizeof(VideoParms)), VideoParms[i]); MEM_WW(0x1d << 2, 0x1000 - sizeof(VideoParms)); MEM_WW((0x1d << 2) + 2, 0); DPRINT("SETUP INT\r\n"); MEM_WW(0x10 << 2, 0xf065); MEM_WW((0x10 << 2) + 2, SYS_BIOS >> 4); MEM_WW(0x42 << 2, 0xf065); MEM_WW((0x42 << 2) + 2, SYS_BIOS >> 4); MEM_WW(0x6D << 2, 0xf065); MEM_WW((0x6D << 2) + 2, SYS_BIOS >> 4); } /* * here we are really paranoid about faking a "real" * BIOS. Most of this information was pulled from * dosemu. */ void setup_int_vect(void) { int i; /* let the int vects point to the SYS_BIOS seg */ for(i = 0; i < 0x80; i++) { MEM_WW(i << 2, 0); MEM_WW((i << 2) + 2, SYS_BIOS >> 4); } reset_int_vect(); /* font tables default location (int 1F) */ MEM_WW(0x1f << 2, 0xfa6e); /* int 11 default location (Get Equipment Configuration) */ MEM_WW(0x11 << 2, 0xf84d); /* int 12 default location (Get Conventional Memory Size) */ MEM_WW(0x12 << 2, 0xf841); /* int 15 default location (I/O System Extensions) */ MEM_WW(0x15 << 2, 0xf859); /* int 1A default location (RTC, PCI and others) */ MEM_WW(0x1a << 2, 0xff6e); /* int 05 default location (Bound Exceeded) */ MEM_WW(0x05 << 2, 0xff54); /* int 08 default location (Double Fault) */ MEM_WW(0x08 << 2, 0xfea5); /* int 13 default location (Disk) */ MEM_WW(0x13 << 2, 0xec59); /* int 0E default location (Page Fault) */ MEM_WW(0x0e << 2, 0xef57); /* int 17 default location (Parallel Port) */ MEM_WW(0x17 << 2, 0xefd2); /* fdd table default location (int 1e) */ MEM_WW(0x1e << 2, 0xefc7); /* Set Equipment flag to VGA */ i = MEM_RB(0x0410) & 0xCF; MEM_WB(0x0410, i); /* XXX Perhaps setup more of the BDA here. See also int42(0x00). */ } #endif static int setup_system_bios(void *base_addr) { char *base = (char *) base_addr; int i; /* * we trap the "industry standard entry points" to the BIOS * and all other locations by filling them with "hlt" * TODO: implement hlt-handler for these */ for(i = 0; i < SIZE_EMU + 4; base[i++] = 0xF4); return(1); } #if 0 static void memsetw(uint32_t addr, uint16_t value, uint16_t count) { while(--count) { wrw(addr, value); addr += 2; } } static uint8_t find_vga_entry(uint8_t mode) { uint8_t i,line=0xFF; for(i=0;i<=MODE_MAX;i++) { if (vga_modes[i].svgamode==mode) { line=i; break; } } return(line); } void biosfn_set_video_mode(uint8_t mode) { uint8_t line,mmask,*palette=0,vpti; uint16_t i,twidth,theightm1,cheight; uint8_t modeset_ctl=0; uint16_t crtc_addr; // find the entry in the video modes line=find_vga_entry(mode); if (line==0xFF) return; vpti=line_to_vpti[line]; twidth=video_param_table[vpti].twidth; theightm1=video_param_table[vpti].theightm1; cheight=video_param_table[vpti].cheight; // if palette loading (bit 3 of modeset ctl = 0) if ((modeset_ctl&0x08)==0) { // Set the PEL mask outb(vga_modes[line].pelmask,VGAREG_PEL_MASK); // Set the whole dac always, from 0 outb(0x00,VGAREG_DAC_WRITE_ADDRESS); // From which palette switch(vga_modes[line].dacmodel) { case 0: palette=palette0; break; case 1: palette=palette1; break; case 2: palette=palette2; break; case 3: palette=palette3; break; } // Always 256*3 values for(i=0;i<0x0100;i++) { if (i<=dac_regs[vga_modes[line].dacmodel]) { outb(palette[(i*3)+0],VGAREG_DAC_DATA); outb(palette[(i*3)+1],VGAREG_DAC_DATA); outb(palette[(i*3)+2],VGAREG_DAC_DATA); } else { outb(0,VGAREG_DAC_DATA); outb(0,VGAREG_DAC_DATA); outb(0,VGAREG_DAC_DATA); } } if ((modeset_ctl&0x02)==0x02) { uint8_t r,g,b; uint16_t i; uint16_t index,start=0; inb(VGAREG_ACTL_RESET); outb(0x00,VGAREG_ACTL_ADDRESS); for(index = 0; index < 0x100; index++) { // set read address and switch to read mode outb(start,VGAREG_DAC_READ_ADDRESS); // get 6-bit wide RGB data values r=inb(VGAREG_DAC_DATA); g=inb(VGAREG_DAC_DATA); b=inb(VGAREG_DAC_DATA); // intensity = ( 0.3 * Red ) + ( 0.59 * Green ) + ( 0.11 * Blue ) i = ((77*r + 151*g + 28*b) + 0x80) >> 8; if (i>0x3f) i=0x3f; // set write address and switch to write mode outb(start,VGAREG_DAC_WRITE_ADDRESS); // write new intensity value outb(i & 0xff,VGAREG_DAC_DATA); outb(i & 0xff,VGAREG_DAC_DATA); outb(i & 0xff,VGAREG_DAC_DATA); start++; } inb(VGAREG_ACTL_RESET); outb(0x20,VGAREG_ACTL_ADDRESS); } } // Reset Attribute Ctl flip-flop inb(VGAREG_ACTL_RESET); // Set Attribute Ctl for(i=0;i<=0x13;i++) { outb(i,VGAREG_ACTL_ADDRESS); outb(video_param_table[vpti].actl_regs[i],VGAREG_ACTL_WRITE_DATA); } outb(0x14,VGAREG_ACTL_ADDRESS); outb(0x00,VGAREG_ACTL_WRITE_DATA); // Set Sequencer Ctl outb(0,VGAREG_SEQU_ADDRESS); outb(0x03,VGAREG_SEQU_DATA); for(i=1;i<=4;i++) { outb(i,VGAREG_SEQU_ADDRESS); outb(video_param_table[vpti].sequ_regs[i - 1],VGAREG_SEQU_DATA); } // Set Grafx Ctl for(i=0;i<=8;i++) { outb(i,VGAREG_GRDC_ADDRESS); outb(video_param_table[vpti].grdc_regs[i],VGAREG_GRDC_DATA); } // Set CRTC address VGA crtc_addr=VGAREG_VGA_CRTC_ADDRESS; // Disable CRTC write protection outw(crtc_addr,0x0011); // Set CRTC regs for(i=0;i<=0x18;i++) { outb(i,crtc_addr); outb(video_param_table[vpti].crtc_regs[i],crtc_addr+1); } // Set the misc register outb(video_param_table[vpti].miscreg,VGAREG_WRITE_MISC_OUTPUT); // Enable video outb(0x20,VGAREG_ACTL_ADDRESS); inb(VGAREG_ACTL_RESET); if (mode<0x0d) memsetw(vga_modes[line].sstart,0x0000,0x4000); // 32k else { outb(0x02, VGAREG_SEQU_ADDRESS); mmask = inb(VGAREG_SEQU_DATA); outb(0x0f, VGAREG_SEQU_DATA); // all planes memsetw(vga_modes[line].sstart, 0x0000, 0x8000); // 64k outb(mmask, VGAREG_SEQU_DATA); } } #endif void run_bios(struct radeonfb_info *rinfo) { long i, j; unsigned char *ptr; struct rom_header *rom_header; struct pci_data *rom_data; unsigned long rom_size=0; unsigned long image_size=0; void *biosmem = (void *) 0x0100000; /* when run_bios() is called, SDRAM is valid but not added to the system */ unsigned long addr; unsigned short initialcs; unsigned short initialip; unsigned short devfn = (unsigned short) rinfo->handle; X86EMU_intrFuncs intFuncs[256]; if ((rinfo->mmio_base == NULL) || (rinfo->io_base == NULL)) { dbg("%s: rinfo->mmio_base = %p, rinfo->io_base = %p\r\n", __FUNCTION__, rinfo->mmio_base, rinfo->io_base); return; } rinfo_biosemu = rinfo; config_address_reg = 0; offset_port = 0x300; offset_io = (uint32_t) rinfo->io_base - (uint32_t) offset_port; offset_mem = (uint32_t) rinfo->fb_base - 0xA0000; rom_header = (struct rom_header *) 0; do { rom_header = (struct rom_header *) ((unsigned long) rom_header + image_size); // get next image rom_data = (struct pci_data *) ((unsigned long)rom_header + (unsigned long) BIOS_IN16((long) &rom_header->data)); image_size = (unsigned long) BIOS_IN16((long) &rom_data->ilen) * 512; } while ((BIOS_IN8((long) &rom_data->type) != 0) && (BIOS_IN8((long) &rom_data->indicator) != 0)); // make sure we got x86 version if (BIOS_IN8((long) &rom_data->type) != 0) { dbg("%s: ROM data type = 0x%x\r\n", __FUNCTION__, BIOS_IN8((long) &rom_data->type)); return; } rom_size = (unsigned long) BIOS_IN8((long) &rom_header->size) * 512; if (PCI_CLASS_DISPLAY_VGA == BIOS_IN16((long) &rom_data->class_hi)) { memset((char *) biosmem, 0, SIZE_EMU); setup_system_bios((char *) biosmem); dbg("%s: Copying VGA ROM Image from %p to %p (0x%lx bytes)\r\n", __FUNCTION__, (long) rinfo->bios_seg + (long) rom_header, biosmem + PCI_VGA_RAM_IMAGE_START, rom_size); { long bytes_align = (long) rom_header & 3; ptr = (unsigned char *) biosmem; i = (long) rom_header; j = PCI_VGA_RAM_IMAGE_START; if (bytes_align) for(; i < 4 - bytes_align; ptr[j++] = BIOS_IN8(i++)); for(; i < (long) rom_header + rom_size; i += 4, j += 4) *((unsigned long *) &ptr[j]) = swpl(BIOS_IN32(i)); } addr = PCI_VGA_RAM_IMAGE_START; } else { setup_system_bios((char *) biosmem); memset((char *) biosmem, 0, SIZE_EMU); dbg("%s: Copying non-VGA ROM Image from %p to %p (0x%lx bytes)\r\n", __FUNCTION__, (long) rinfo->bios_seg + (long) rom_header, biosmem + PCI_RAM_IMAGE_START, rom_size); ptr = (unsigned char *) biosmem; for (i = (long) rom_header, j = PCI_RAM_IMAGE_START; i < (long) rom_header+rom_size; ptr[j++] = BIOS_IN8(i++)); addr = PCI_RAM_IMAGE_START; } initialcs = (addr & 0xF0000) >> 4; initialip = (addr + 3) & 0xFFFF; X86EMU_setMemBase((void *) biosmem, SIZE_EMU); for (i = 0; i < 256; i++) intFuncs[i] = do_int; X86EMU_setupIntrFuncs(intFuncs); { char *date = "01/01/99"; for (i = 0; date[i]; i++) wrb(0xffff5 + i, date[i]); wrb(0xffff7, '/'); wrb(0xffffa, '/'); } { /* FixME: move PIT init to its own file */ outb(0x36, 0x43); outb(0x00, 0x40); outb(0x00, 0x40); } // setup_int_vect(); /* cpu setup */ X86_AX = devfn ? devfn : 0xff; X86_DX = 0x80; X86_EIP = initialip; X86_CS = initialcs; /* Initialize stack and data segment */ X86_SS = initialcs; X86_SP = 0xfffe; X86_DS = 0x0040; X86_ES = 0x0000; /* * We need a sane way to return from bios * execution. A hlt instruction and a pointer * to it, both kept on the stack, will do. */ pushw(0xf4f4); /* hlt; hlt */ // pushw(0x10cd); /* int #0x10 */ // pushw(0x0013); /* 320 x 200 x 256 colors */ // // pushw(0x000F); /* 640 x 350 x mono */ // pushw(0xb890); /* nop, mov ax,#0x13 */ pushw(X86_SS); pushw(X86_SP + 2); #ifdef DBG_X86EMU X86EMU_trace_on(); X86EMU_set_debug(DEBUG_DECODE_F | DEBUG_TRACE_F); #endif dbg("%s: X86EMU entering emulator\r\n", __FUNCTION__); //*vblsem = 0; X86EMU_exec(); //*vblsem = 1; dbg("%s: X86EMU halted\r\n", __FUNCTION__); // biosfn_set_video_mode(0x13); /* 320 x 200 x 256 colors */ memset((char *) biosmem, 0, SIZE_EMU); }