/* * Interrupts * * Handle interrupts, the levels. * * * This file is part of BaS_gcc. * * BaS_gcc is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * BaS_gcc is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with BaS_gcc. If not, see . * * Created on: 26.02.2013 * Author: Markus Fröschle */ #include #include "MCF5475.h" #include "bas_utils.h" #include "bas_printf.h" #include "bas_string.h" #include "exceptions.h" #include "interrupts.h" #include "bas_printf.h" #include "startcf.h" #include "cache.h" #include "util.h" #include "dma.h" #include "pci.h" #include // #define DEBUG #include "debug.h" #ifndef MAX_ISR_ENTRY #define MAX_ISR_ENTRY (20) #endif struct isrentry { int vector; bool (*handler)(void *, void *); void *hdev; void *harg; }; static struct isrentry isrtab[MAX_ISR_ENTRY]; /* list of interrupt service routines */ /* * clear the table of interrupt service handlers */ void isr_init(void) { memset(isrtab, 0, sizeof(isrtab)); } bool isr_set_prio_and_level(int int_source, int priority, int level) { if (int_source > 8 && int_source <= 62) { /* * preset interrupt control registers with level and priority */ dbg("set MCF_INTC_ICR(%d) to priority %d, level %d\r\n", int_source, priority, level); MCF_INTC_ICR(int_source) = MCF_INTC_ICR_IP(priority) | MCF_INTC_ICR_IL(level); } else if (int_source >= 1 && int_source <= 8) { dbg("interrrupt control register for vector %d is read only!\r\n"); } else { err("invalid vector - interrupt control register not set.\r\n"); return false; } return true; } /* * enable internal int source in interrupt controller */ bool isr_enable_int_source(int int_source) { dbg("anding int_source %d, MCF_INTC_IMR%c = 0x%08x, now 0x%08x\r\n", int_source, int_source < 32 && int_source > 0 ? 'L' : int_source >= 32 && int_source <= 62 ? 'H' : 'U', int_source < 32 && int_source > 0 ? ~(1 << int_source) : int_source >= 32 && int_source <= 62 ? ~(1 << (int_source - 32)) : 0, MCF_INTC_IMRH); if (int_source < 32 && int_source > 0) { MCF_INTC_IMRL &= ~(1 << int_source); } else if (int_source >= 32 && int_source <= 62) { MCF_INTC_IMRH &= ~(1 << (int_source - 32)); } else { dbg("vector %d does not correspond to an internal interrupt source\r\n"); return false; } return true; } /* * This function places an interrupt handler in the ISR table, * thereby registering it so that the low-level handler may call it. * * The two parameters are intended for the first arg to be a * pointer to the device itself, and the second a pointer to a data * structure used by the device driver for that particular device. */ bool isr_register_handler(int vector, int level, int priority, bool (*handler)(void *, void *), void *hdev, void *harg) { int index; int int_source; if ((vector <= 0) || (handler == NULL)) { dbg("illegal vector or handler (vector=%x, handler=%p)!\r\n", vector, handler); return false; } for (index = 0; index < MAX_ISR_ENTRY; index++) { if (isrtab[index].vector == vector) { /* one cross each, only! */ dbg("already set handler with this vector (%d, %d)\r\n", vector); return false; } if (isrtab[index].vector == 0) { isrtab[index].vector = vector; isrtab[index].handler = handler; isrtab[index].hdev = hdev; isrtab[index].harg = harg; int_source = vector - 64; if (int_source >= 0) { if (!isr_enable_int_source(int_source)) { dbg("failed to enable internal interrupt souce %d in IMRL/IMRH\r\n", int_source); return false; } if (!isr_set_prio_and_level(int_source, priority, level)) { dbg("failed to set priority and level for interrupt source %d\r\n", int_source); return false; } } return true; } } dbg("no available slots to register handler for vector %d\n\r", vector); return false; /* no available slots */ } void isr_remove_handler(bool (*handler)(void *, void *)) { /* * This routine removes from the ISR table all * entries that matches 'handler'. */ int index; for (index = 0; index < MAX_ISR_ENTRY; index++) { if (isrtab[index].handler == handler) { memset(&isrtab[index], 0, sizeof(struct isrentry)); return; } } dbg("no such handler registered (handler=%p\r\n", handler); } #ifdef DEBUG static char *vector_to_str[] = { "initial stack pointer", /* 0 */ "initial program counter", /* 1 */ "access error", /* 2 */ "address error", /* 3 */ "illegal instruction", /* 4 */ "divide by zero", /* 5 */ "reserved6", /* 6 */ "reserved7", /* 7 */ "privilege violation", /* 8 */ "trace", /* 9 */ "unimplemented line-a opcode", /* 10 */ "unimplemented line-f opcode", /* 11 */ "non-PC breakpoint debug interrupt", /* 12 */ "PC breakpoint debug interrupt", /* 13 */ "format error", /* 14 */ "uninitialized interrupt", /* 15 */ "reserved16", "reserved17", "reserved18", "reserved19", "reserved20", "reserved21", "reserved22", "reserved23", "spurious interrupt", /* 24 */ "level 1 autovector", /* 25 */ "level 2 autovector", /* 26 */ "level 3 autovector", /* 27 */ "level 4 autovector", /* 28 */ "level 5 autovector", /* 29 */ "level 6 autovector", /* 30 */ "level 7 autovector", /* 31 */ "trap #0", /* 32 */ "trap #1", /* 33 */ "trap #2", /* 34 */ "trap #3", /* 35 */ "trap #4", /* 36 */ "trap #5", /* 37 */ "trap #6", /* 38 */ "trap #7", /* 39 */ "trap #8", /* 40 */ "trap #9", /* 41 */ "trap #10" /* 42 */ "trap #11", /* 43 */ "trap #12", /* 44 */ "trap #13", /* 45 */ "trap #14", /* 46 */ "trap #15", /* 47 */ "floating point branch on unordered condition", /* 48 */ "floting point inexact result", /* 49 */ "floating point divide by zero", /* 50 */ "floating point underflow", /* 51 */ "floating point operand error", /* 52 */ "floating point overflow", /* 53 */ "floating point NaN", /* 54 */ "floating point denormalized number", /* 55 */ "reserved56", /* 56 */ "reserved57", "reserved58", "reserved59", "reserved60", "unsupported instruction", /* 61 */ "reserved62", /* 62 */ "reserved63", /* 63 */ "", "", "edge port 1", /* 1 */ "edge port 2", /* 2 */ "edge port 3", /* 3 */ "edge port 4", /* 4 */ "edge port 5", /* 5 */ "edge port 6", /* 6 */ "edge port 7", /* 7 */ "unused8", "unused9", "unused10", "unused11", "unused12", "unused13", "unused14", "USB endpoint 0", /* 15 */ "USB endpoint 1", /* 16 */ "USB endpoint 2", /* 17 */ "USB endpoint 3", /* 18 */ "USB endpoint 4", /* 19 */ "USB endpoint 5", /* 20 */ "USB endpoint 6", /* 21 */ "USB general interrupt", /* 22 */ "USB core interrupt", /* 23 */ "USB OR interrupt", /* 24 */ "DSPI over/underflow", /* 25 */ "DSPI receive FIFO overflow", /* 26 */ "DSPI receive FIFO drain", /* 27 */ "DSPI transmit FIFO underflow", /* 28 */ "DSPI transfer complete", /* 29 */ "DSPI trasmit FIFO full", /* 30 */ "DSPI end of queue", /* 31 */ "PSC3", /* 32 */ "PSC2", /* 33 */ "PSC1", /* 34 */ "PSC0", /* 35 */ "Comm timer", /* 36 */ "SEC", /* 37 */ "FEC1", /* 38 */ "FEC0", /* 39 */ "I2C", /* 40 */ "PCI arbiter", /* 41 */ "comm bus PCI", /* 42 */ "XLB PCI", /* 43 */ "not used44", "not used45", "not used46", "XLB arbiter to CPU", /* 47 */ "multichannel DMA", /* 48 */ "FlexCAN 0 error", /* 49 */ "FlexCAN 0 bus off", /* 50 */ "FlexCAN 0 message buffer", /* 51 */ "not used52" "slice timer 1", /* 53 */ "slice timer 0", /* 54 */ "FlexCAN 1 error", /* 55 */ "FlexCAN 1 bus off", /* 56 */ "FlexCAN 1 message buffer", /* 57 */ "not used58", "GPT3", /* 59 */ "GPT2", /* 60 */ "GPT1", /* 61 */ "GPT0", /* 62 */ "not used63" }; #endif /* DEBUG */ /* * This routine searches the ISR table for an entry that matches * 'vector'. If one is found, then 'handler' is executed. * * This routine returns either true or false where * true = interrupt has been handled, return to caller * false= interrupt has been handled or hasn't, but needs to be forwarded to TOS */ bool isr_execute_handler(int vector) { int index; dbg("vector = %d (%s)\r\n", vector, vector_to_str[vector]); /* * locate an interrupt service routine handler. */ for (index = 0; index < MAX_ISR_ENTRY; index++) { if (isrtab[index].vector == vector) { isrtab[index].handler(isrtab[index].hdev, isrtab[index].harg); return true; } } err("no isr handler for vector %d found. Spurious?\r\n", vector); return true; } #if defined(MACHINE_FIREBEE) /* * PIC interrupt handler for Firebee * * Handles PIC requests that come in from PSC3 serial interface. Currently, that * is RTC/NVRAM requests only */ bool pic_interrupt_handler(void *arg1, void *arg2) { uint8_t rcv_byte; dbg("PIC interrupt\r\n"); rcv_byte = read_pic_byte(); if (rcv_byte == 2) /* PIC requests RTC data */ { volatile uint8_t *rtc_reg = (uint8_t *) 0xffff8961; volatile uint8_t *rtc_data = (uint8_t *) 0xffff8963; int index = 0; inf("PIC interrupt: requesting RTC data\r\n"); write_pic_byte(0x82); // header byte to PIC do { *rtc_reg = index; write_pic_byte(*rtc_data); } while (++index < 64); } return true; } #endif /* MACHINE_FIREBEE */ bool xlbpci_interrupt_handler(void *arg1, void *arg2) { uint32_t reason; dbg("XLB PCI interrupt\r\n"); reason = MCF_PCI_PCIISR; if (reason & MCF_PCI_PCIISR_RE) { dbg("Retry error. Retry terminated or max retries reached. Cleared\r\n"); MCF_PCI_PCIISR |= MCF_PCI_PCIISR_RE; } if (reason & MCF_PCI_PCIISR_IA) { dbg("Initiator abort. No target answered in time. Cleared.\r\n"); MCF_PCI_PCIISR |= MCF_PCI_PCIISR_IA; } if (reason & MCF_PCI_PCIISR_TA) { dbg("Target abort. Cleared.\r\n"); MCF_PCI_PCIISR |= MCF_PCI_PCIISR_TA; } return true; } bool pciarb_interrupt_handler(void *arg1, void *arg2) { dbg("PCI ARB interrupt\r\n"); MCF_PCIARB_PASR |= MCF_PCIARB_PASR_EXTMBK(0x1f) | MCF_PCIARB_PASR_ITLMBK; return true; } bool xlbarb_interrupt_handler(void *arg1, void *arg2) { uint32_t status = MCF_XLB_XARB_SR; dbg("arg1=0x%08x arg2=0x%08x\r\n", arg1, arg2); /* * TODO: we should probably issue a bus error when this occors */ err("XLB arbiter interrupt\r\n"); err("captured address: 0x%08lx\r\n", MCF_XLB_XARB_ADRCAP); MCF_XLB_XARB_ADRCAP = 0x0L; MCF_XLB_XARB_SIGCAP = 0x0L; if (status & MCF_XLB_XARB_SR_AT) err("address tenure timeout\r\n"); if (status & MCF_XLB_XARB_SR_DT) err("data tenure timeout\r\n"); if (status & MCF_XLB_XARB_SR_BA) err("bus activity tenure timeout\r\n"); if (status & MCF_XLB_XARB_SR_TTM) err("TBST/TSIZ mismatch\r\n"); if (status & MCF_XLB_XARB_SR_ECW) err("external control word read/write\r\n"); if (status & MCF_XLB_XARB_SR_TTR) err("TT reserved\r\n"); if (status & MCF_XLB_XARB_SR_TTA) err("TT address only\r\n"); if (status & MCF_XLB_XARB_SR_MM) err("multiple masters at priority 0\r\n"); if (status & MCF_XLB_XARB_SR_SEA) err("slave error acknowledge\r\n"); /* * acknowledge interrupt */ MCF_XLB_XARB_SR = status; /* rwc bits */ return true; } #if defined(MACHINE_FIREBEE) /* * This gets called from irq5 in exceptions.S * * IRQ5 are the "FBEE" (PIC, ETH PHY, PCI, DVI monitor sense and DSP) interrupts multiplexed by the FPGA interrupt handler */ bool irq5_handler(void *arg1, void *arg2) { uint32_t pending_interrupts = FBEE_INTR_PENDING; dbg("IRQ5!\r\n"); if (pending_interrupts & FBEE_INTR_PIC) { dbg("PIC interrupt\r\n"); FBEE_INTR_CLEAR = FBEE_INTR_PIC; } if (pending_interrupts & FBEE_INTR_ETHERNET) { dbg("ethernet 0 PHY interrupt\r\n"); FBEE_INTR_CLEAR = FBEE_INTR_ETHERNET; } if (pending_interrupts & FBEE_INTR_DVI) { dbg("DVI monitor sense interrupt\r\n"); FBEE_INTR_CLEAR = FBEE_INTR_DVI; } if (pending_interrupts & FBEE_INTR_PCI_INTA || pending_interrupts & FBEE_INTR_PCI_INTB || pending_interrupts & FBEE_INTR_PCI_INTC || pending_interrupts & FBEE_INTR_PCI_INTD) { int handle; if ((handle = pci_get_interrupt_cause() != -1)) { pci_call_interrupt_chain(handle, 0L); } dbg("PCI interrupt IRQ5\r\n"); FBEE_INTR_CLEAR = FBEE_INTR_PCI_INTA | FBEE_INTR_PCI_INTB | FBEE_INTR_PCI_INTC | FBEE_INTR_PCI_INTD; } if (pending_interrupts & FBEE_INTR_DSP) { dbg("DSP interrupt\r\n"); FBEE_INTR_CLEAR = FBEE_INTR_DSP; } MCF_EPORT_EPFR |= (1 << 5); /* clear interrupt from edge port */ return true; } /* * blink the Firebee's LED to show we are still alive */ void blink_led(void) { static uint16_t blinker = 0; if ((blinker++ & 0x80) > 0) { MCF_GPIO_PODR_FEC1L |= (1 << 4); /* LED off */ } else { MCF_GPIO_PODR_FEC1L &= ~(1 << 4); /* LED on */ } } /* * Atari MFP interrupt registers. * * TODO: should go into a header file */ #define FALCON_MFP_IERA *((volatile uint8_t *) 0xfffffa07) #define FALCON_MFP_IERB *((volatile uint8_t *) 0xfffffa09) #define FALCON_MFP_IPRA *((volatile uint8_t *) 0xfffffa0b) #define FALCON_MFP_IPRB *((volatile uint8_t *) 0xfffffa0d) #define FALCON_MFP_IMRA *((volatile uint8_t *) 0xfffffa13) #define FALCON_MFP_IMRB *((volatile uint8_t *) 0xfffffa15) bool irq6_acsi_dma_interrupt(void) { dbg("ACSI DMA interrupt\r\n"); /* * TODO: implement handler */ return false; } bool irq6_handler(uint32_t sf1, uint32_t sf2) { //err("IRQ6!\r\n"); if (FALCON_MFP_IPRA || FALCON_MFP_IPRB) { blink_led(); } MCF_EPORT_EPFR |= (1 << 6); /* clear int6 from edge port */ return false; /* always forward IRQ6 to TOS */ } #else /* MACHINE_FIREBEE */ bool irq5_handler(void *arg1, void *arg2) { MCF_EPORT_EPFR |= (1 << 5); /* clear int5 from edge port */ return true; } bool irq6_handler(void *arg1, void *arg2) { err("IRQ6!\r\n"); MCF_EPORT_EPFR |= (1 << 6); /* clear int6 from edge port */ return false; /* always forward IRQ6 to TOS */ } /* * This gets called from irq7 in exceptions.S * Once we arrive here, the SR has been set to disable interrupts and the gcc scratch registers have been saved */ bool irq7_handler(void) { int32_t handle; int32_t value = 0; int32_t newvalue; MCF_EPORT_EPFR |= (1 << 7); dbg("IRQ7!\r\n"); if ((handle = pci_get_interrupt_cause()) > 0) { newvalue = pci_call_interrupt_chain(handle, value); if (newvalue == value) { dbg("interrupt not handled!\r\n"); } } MCF_EPORT_EPFR |= (1 << 7); /* clear int7 from edge port */ return true; } #endif /* MACHINE_M548X */ #if defined(MACHINE_FIREBEE) /* * this is the higlevel interrupt service routine for gpt0 timer interrupts. * * It is called from handler_gpt0 in exceptions.S * * The gpt0 timer is not used as a timer, but as interrupt trigger by the FPGA which fires * everytime the video base address high byte (0xffff8201) gets written by user code (i.e. * everytime the video base address is set). * The interrupt service routine checks if that page was already set as a video page (in that * case it does nothing), if not (if we have a newly set page), it sets up an MMU mapping for * that page (effectively rerouting any further access to Falcon video RAM to Firebee FPGA * video RAM starting at 0x60000000) and copies SDRAM contents of that page to the video * RAM page. */ bool gpt0_interrupt_handler(void *arg0, void *arg1) { dbg("gpt0 handler called\n\r"); MCF_GPT0_GMS &= ~1; /* rearm trigger */ NOP(); MCF_GPT0_GMS |= 1; return true; } #endif /* MACHINE_FIREBEE */ uint32_t set_ipl(uint32_t ipl) { uint32_t ret; __asm__ __volatile__( " move.w sr,%[ret]\r\n" /* retrieve status register */ " andi.l #0x07,%[ipl]\n\t" /* mask out ipl bits on new value */ " lsl.l #8,%[ipl]\n\t" /* shift them to position */ " move.l %[ret],d0\n\t" /* retrieve original value */ " andi.l #0x0000f8ff,d0\n\t" /* clear ipl part */ " or.l %[ipl],d0\n\t" /* or in new value */ " move.w d0,sr\n\t" /* put it in place */ " andi.l #0x0700,%[ret]\r\n" /* mask out ipl bits */ " lsr.l #8,%[ret]\r\n" /* shift them to position */ : [ret] "=&d" (ret) /* output */ : [ipl] "d" (ipl) /* input */ : "d0", "cc" /* clobber */ ); return ret; }