/* * fbmon.c * * Copyright (C) 2002 James Simmons * * Credits: * * The EDID Parser is a conglomeration from the following sources: * * 1. SciTech SNAP Graphics Architecture * Copyright (C) 1991-2002 SciTech Software, Inc. All rights reserved. * * 2. XFree86 4.3.0, interpret_edid.c * Copyright 1998 by Egbert Eich * * 3. John Fremlin and * Ani Joshi * * Generalized Timing Formula is derived from: * * GTF Spreadsheet by Andy Morrish (1/5/97) * available at http://www.vesa.org * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive * for more details. * */ #include "bas_string.h" #include "fb.h" #include "edid.h" // #define DEBUG #include "debug.h" /* * EDID parser */ #define FBMON_FIX_HEADER 1 #define FBMON_FIX_INPUT 2 struct broken_edid { unsigned char manufacturer[4]; unsigned long model; unsigned long fix; }; static struct broken_edid brokendb[] = { /* DEC FR-PCXAV-YZ */ { .manufacturer = "DEC", .model = 0x073a, .fix = FBMON_FIX_HEADER, }, /* ViewSonic PF775a */ { .manufacturer = "VSC", .model = 0x5a44, .fix = FBMON_FIX_INPUT, }, }; static const unsigned char edid_v1_header[] = { 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 }; static void copy_string(unsigned char *c, unsigned char *s) { int32_t i; c = c + 5; for (i = 0; (i < 13 && *c != 0x0A); i++) *(s++) = *(c++); *s = 0; while (i-- && (*--s == 0x20)) *s = 0; } static int32_t check_edid(unsigned char *edid) { unsigned char *block = edid + ID_MANUFACTURER_NAME; unsigned char manufacturer[4]; unsigned char *b; unsigned long model; int32_t i, fix = 0, ret = 0; manufacturer[0] = ((block[0] & 0x7c) >> 2) + '@'; manufacturer[1] = ((block[0] & 0x03) << 3) + ((block[1] & 0xe0) >> 5) + '@'; manufacturer[2] = (block[1] & 0x1f) + '@'; manufacturer[3] = 0; model = block[2] + (block[3] << 8); for (i = 0; i < sizeof(brokendb)/sizeof(*brokendb); i++) { if (manufacturer[0] == brokendb[i].manufacturer[0] && manufacturer[1] == brokendb[i].manufacturer[1] && manufacturer[2] == brokendb[i].manufacturer[2] && manufacturer[3] == brokendb[i].manufacturer[3] && brokendb[i].model == model) { fix = brokendb[i].fix; break; } } switch (fix) { case FBMON_FIX_HEADER: for (i = 0; i < 8; i++) { if(edid[i] != edid_v1_header[i]) ret = fix; } break; case FBMON_FIX_INPUT: b = edid + EDID_STRUCT_DISPLAY; /* Only if display is GTF capable will the input type be reset to analog */ if (b[4] & 0x01 && b[0] & 0x80) ret = fix; break; } return ret; } static void fix_edid(unsigned char *edid, int32_t fix) { unsigned char *b; switch (fix) { case FBMON_FIX_HEADER: memcpy(edid, edid_v1_header, 8); break; case FBMON_FIX_INPUT: b = edid + EDID_STRUCT_DISPLAY; b[0] &= ~0x80; edid[127] += 0x80; break; } } static int32_t edid_checksum(unsigned char *edid) { unsigned char i, csum = 0, all_null = 0; int err = 0; int fix = check_edid(edid); if (fix) fix_edid(edid, fix); for (i = 0; i < EDID_LENGTH; i++) { csum += edid[i]; all_null |= edid[i]; } if ((csum == 0x00) && all_null) /* checksum passed, everything's good */ err = 1; if (!err) dbg("edid bad checksum\r\n"); return err; } static int32_t edid_check_header(unsigned char *edid) { int i; int err = 1; int fix = check_edid(edid); if (fix) fix_edid(edid, fix); for (i = 0; i < 8; i++) { if (edid[i] != edid_v1_header[i]) err = 0; } if (!err) dbg("edid bad header\r\n"); return err; } static void parse_vendor_block(unsigned char *block, struct fb_monspecs *specs) { specs->manufacturer[0] = ((block[0] & 0x7c) >> 2) + '@'; specs->manufacturer[1] = ((block[0] & 0x03) << 3) + ((block[1] & 0xe0) >> 5) + '@'; specs->manufacturer[2] = (block[1] & 0x1f) + '@'; specs->manufacturer[3] = 0; specs->model = block[2] + (block[3] << 8); specs->serial = block[4] + (block[5] << 8) + (block[6] << 16) + (block[7] << 24); specs->year = block[9] + 1990; specs->week = block[8]; dbg(" Manufacturer: %s\r\n", specs->manufacturer); dbg(" Model: %s\r\n", specs->model); dbg(" Serial#: %d\r\n", specs->serial); dbg(" Year: %d\r\n", specs->year); dbg(" Week %d\r\n", specs->week); } static void get_dpms_capabilities(unsigned char flags, struct fb_monspecs *specs) { specs->dpms = 0; if (flags & DPMS_ACTIVE_OFF) specs->dpms |= FB_DPMS_ACTIVE_OFF; if (flags & DPMS_SUSPEND) specs->dpms |= FB_DPMS_SUSPEND; if (flags & DPMS_STANDBY) specs->dpms |= FB_DPMS_STANDBY; dbg(" DPMS: Active %s\r\n", (flags & DPMS_ACTIVE_OFF) ? "yes" : "no"); dbg(" Suspend: %s\r\n", (flags & DPMS_SUSPEND) ? "yes" : "no"); dbg(" Standby %s\r\n", (flags & DPMS_STANDBY) ? "yes\r\n" : "no\r\n"); } static void get_chroma(unsigned char *block, struct fb_monspecs *specs) { int tmp; /* Chromaticity data */ tmp = ((block[5] & (3 << 6)) >> 6) | (block[0x7] << 2); tmp *= 1000; tmp += 512; specs->chroma.redx = tmp/1024; dbg(" Chroma\r\n"); dbg(" RedX: %d\r\n", specs->chroma.redx / 10); tmp = ((block[5] & (3 << 4)) >> 4) | (block[0x8] << 2); tmp *= 1000; tmp += 512; specs->chroma.redy = tmp/1024; dbg(" RedY: %d\r\n", specs->chroma.redy / 10); tmp = ((block[5] & (3 << 2)) >> 2) | (block[0x9] << 2); tmp *= 1000; tmp += 512; specs->chroma.greenx = tmp/1024; dbg(" GreenX: %d\r\n", specs->chroma.greenx / 10); tmp = (block[5] & 3) | (block[0xa] << 2); tmp *= 1000; tmp += 512; specs->chroma.greeny = tmp / 1024; dbg(" GreenY: %d\r\n", specs->chroma.greeny / 10); tmp = ((block[6] & (3 << 6)) >> 6) | (block[0xb] << 2); tmp *= 1000; tmp += 512; specs->chroma.bluex = tmp/1024; dbg(" BlueX: %d\r\n", specs->chroma.bluex / 10); tmp = ((block[6] & (3 << 4)) >> 4) | (block[0xc] << 2); tmp *= 1000; tmp += 512; specs->chroma.bluey = tmp/1024; dbg(" BlueY: %d\r\n", specs->chroma.bluey / 10); tmp = ((block[6] & (3 << 2)) >> 2) | (block[0xd] << 2); tmp *= 1000; tmp += 512; specs->chroma.whitex = tmp/1024; dbg(" WhiteX: %d\r\n", specs->chroma.whitex / 10); tmp = (block[6] & 3) | (block[0xe] << 2); tmp *= 1000; tmp += 512; specs->chroma.whitey = tmp/1024; dbg(" WhiteY: %d\r\n", specs->chroma.whitey / 10); } static int edid_is_serial_block(unsigned char *block) { if ((block[0] == 0x00) && (block[1] == 0x00) && (block[2] == 0x00) && (block[3] == 0xff) && (block[4] == 0x00)) return 1; else return 0; } static int edid_is_ascii_block(unsigned char *block) { if ((block[0] == 0x00) && (block[1] == 0x00) && (block[2] == 0x00) && (block[3] == 0xfe) && (block[4] == 0x00)) return 1; else return 0; } static int edid_is_limits_block(unsigned char *block) { if ((block[0] == 0x00) && (block[1] == 0x00) && (block[2] == 0x00) && (block[3] == 0xfd) && (block[4] == 0x00)) return 1; else return 0; } static int edid_is_monitor_block(unsigned char *block) { if ((block[0] == 0x00) && (block[1] == 0x00) && (block[2] == 0x00) && (block[3] == 0xfc) && (block[4] == 0x00)) return 1; else return 0; } static void calc_mode_timings(int32_t xres, int32_t yres, int32_t refresh, struct fb_videomode *mode) { struct fb_var_screeninfo var; struct fb_info info; var.xres = xres; var.yres = yres; fb_get_mode(FB_VSYNCTIMINGS | FB_IGNOREMON, refresh, &var, &info); mode->xres = xres; mode->yres = yres; mode->pixclock = var.pixclock; mode->refresh = refresh; mode->left_margin = var.left_margin; mode->right_margin = var.right_margin; mode->upper_margin = var.upper_margin; mode->lower_margin = var.lower_margin; mode->hsync_len = var.hsync_len; mode->vsync_len = var.vsync_len; mode->vmode = 0; mode->sync = 0; } static int get_est_timing(unsigned char *block, struct fb_videomode *mode) { int num = 0; unsigned char c; c = block[0]; if (c & 0x80) { calc_mode_timings(720, 400, 70, &mode[num]); mode[num++].flag = FB_MODE_IS_CALCULATED; dbg(" 720x400@70Hz\r\n"); } if (c & 0x40) { calc_mode_timings(720, 400, 88, &mode[num]); mode[num++].flag = FB_MODE_IS_CALCULATED; dbg(" 720x400@88Hz\r\n"); } if (c & 0x20) { mode[num++] = vesa_modes[3]; dbg(" 640x480@60Hz\r\n"); } if (c & 0x10) { calc_mode_timings(640, 480, 67, &mode[num]); mode[num++].flag = FB_MODE_IS_CALCULATED; dbg(" 640x480@67Hz\r\n"); } if (c & 0x08) { mode[num++] = vesa_modes[4]; dbg(" 640x480@72Hz\r\n"); } if (c & 0x04) { mode[num++] = vesa_modes[5]; dbg(" 640x480@75Hz\r\n"); } if (c & 0x02) { mode[num++] = vesa_modes[7]; dbg(" 800x600@56Hz\r\n"); } if (c & 0x01) { mode[num++] = vesa_modes[8]; dbg(" 800x600@60Hz\r\n"); } c = block[1]; if (c & 0x80) { mode[num++] = vesa_modes[9]; dbg(" 800x600@72Hz\r\n"); } if (c & 0x40) { mode[num++] = vesa_modes[10]; dbg(" 800x600@75Hz\r\n"); } if (c & 0x20) { calc_mode_timings(832, 624, 75, &mode[num]); mode[num++].flag = FB_MODE_IS_CALCULATED; dbg(" 832x624@75Hz\r\n"); } if (c & 0x10) { mode[num++] = vesa_modes[12]; dbg(" 1024x768@87Hz Interlaced\r\n"); } if (c & 0x08) { mode[num++] = vesa_modes[13]; dbg(" 1024x768@60Hz\r\n"); } if (c & 0x04) { mode[num++] = vesa_modes[14]; dbg(" 1024x768@70Hz\r\n"); } if (c & 0x02) { mode[num++] = vesa_modes[15]; dbg(" 1024x768@75Hz\r\n"); } if (c & 0x01) { mode[num++] = vesa_modes[21]; dbg(" 1280x1024@75Hz\r\n"); } c = block[2]; if (c & 0x80) { mode[num++] = vesa_modes[17]; dbg(" 1152x870@75Hz\r\n"); } dbg(" Manufacturer's mask: 0x%02x\r\n", c & 0x7F); return num; } static int get_std_timing(unsigned char *block, struct fb_videomode *mode) { int xres; int yres = 0; int refresh; int ratio; int i; xres = (block[0] + 31) * 8; if (xres <= 256) return 0; ratio = (block[1] & 0xc0) >> 6; switch(ratio) { case 0: yres = xres; break; case 1: yres = (xres * 3) / 4; break; case 2: yres = (xres * 4) / 5; break; case 3: yres = (xres * 9) / 16; break; } refresh = (block[1] & 0x3f) + 60; dbg("%dx%d@ Hz\r\n",xres, yres, refresh); for (i = 0; i < VESA_MODEDB_SIZE; i++) { if (vesa_modes[i].xres == xres && vesa_modes[i].yres == yres && vesa_modes[i].refresh == refresh) { *mode = vesa_modes[i]; mode->flag |= FB_MODE_IS_STANDARD; return 1; } } calc_mode_timings(xres, yres, refresh, mode); return 1; } static int get_dst_timing(unsigned char *block, struct fb_videomode *mode) { int j; int num = 0; for (j = 0; j < 6; j++, block+= STD_TIMING_DESCRIPTION_SIZE) num += get_std_timing(block, &mode[num]); return num; } static void get_detailed_timing(unsigned char *block, struct fb_videomode *mode) { mode->xres = H_ACTIVE; mode->yres = V_ACTIVE; mode->pixclock = PIXEL_CLOCK; mode->pixclock /= 1000; mode->pixclock = KHZ2PICOS(mode->pixclock); mode->right_margin = H_SYNC_OFFSET; mode->left_margin = (H_ACTIVE + H_BLANKING) - (H_ACTIVE + H_SYNC_OFFSET + H_SYNC_WIDTH); mode->upper_margin = V_BLANKING - V_SYNC_OFFSET - V_SYNC_WIDTH; mode->lower_margin = V_SYNC_OFFSET; mode->hsync_len = H_SYNC_WIDTH; mode->vsync_len = V_SYNC_WIDTH; if (HSYNC_POSITIVE) mode->sync |= FB_SYNC_HOR_HIGH_ACT; if (VSYNC_POSITIVE) mode->sync |= FB_SYNC_VERT_HIGH_ACT; mode->refresh = PIXEL_CLOCK / ((H_ACTIVE + H_BLANKING) * (V_ACTIVE + V_BLANKING)); mode->vmode = 0; mode->flag = FB_MODE_IS_DETAILED; dbg("%d MHz 0x%04x 0x%04x 0x%04x 0x%04x 0x%04x 0x%04x 0x%04x\r\n", PIXEL_CLOCK / 1000000, H_ACTIVE, H_ACTIVE + H_SYNC_OFFSET, H_ACTIVE + H_SYNC_OFFSET + H_SYNC_WIDTH, H_ACTIVE + H_BLANKING, V_ACTIVE, V_ACTIVE + V_SYNC_OFFSET, V_ACTIVE + V_SYNC_OFFSET + V_SYNC_WIDTH, V_ACTIVE + V_BLANKING); dbg("Hsync %s Vsync %s\r\n", (HSYNC_POSITIVE) ? " +" : " -", (VSYNC_POSITIVE) ? "+" : "-"); } #define MAX_DB_ALLOC 100 static struct fb_videomode tab_db[MAX_DB_ALLOC]; static struct fb_videomode *db_used[MAX_DB_ALLOC]; static struct fb_videomode *alloc_db(int num) { int i = 0; if (!num) return NULL; while (i < MAX_DB_ALLOC) { if ((db_used[i] == NULL) && ((i + num) <= MAX_DB_ALLOC)) { int32_t j; /* search contiguous num db free */ for (j = 0; j < num; j++) { if (db_used[i + j] != NULL) break; /* already used */ } if (j >= num) { struct fb_videomode *p = &tab_db[i]; for (j = 0; j < num; db_used[i+j] = p, j++); return p; } } i++; } return NULL; } static void free_db(struct fb_videomode *db) { int32_t i; for (i = 0; i < MAX_DB_ALLOC; i++) { if (db_used[i] == db) db_used[i] = NULL; } } /** * fb_destroy_modedb - destroys mode database * @modedb: mode database to destroy * * DESCRIPTION: * Destroy mode database created by fb_create_modedb */ void fb_destroy_modedb(struct fb_videomode *modedb) { // Funcs_free(modedb); free_db(modedb); } /** * fb_create_modedb - create video mode database * @edid: EDID data * @dbsize: database size * * RETURNS: struct fb_videomode, @dbsize contains length of database * * DESCRIPTION: * This function builds a mode database using the contents of the EDID * data */ static struct fb_videomode *fb_create_modedb(unsigned char *edid, int *dbsize) { struct fb_videomode *mode; struct fb_videomode *m; unsigned char *block; int num = 0; int i; // mode = Funcs_malloc(50 * sizeof(struct fb_videomode), 3); mode = alloc_db(50); if (mode == NULL) return NULL; memset(mode, 0, 50 * sizeof(struct fb_videomode)); if (edid == NULL || !edid_checksum(edid) || !edid_check_header(edid)) { fb_destroy_modedb(mode); return NULL; } *dbsize = 0; dbg(" Supported VESA Modes\r\n"); block = edid + ESTABLISHED_TIMING_1; num += get_est_timing(block, &mode[num]); dbg(" Standard Timings\r\n"); block = edid + STD_TIMING_DESCRIPTIONS_START; for (i = 0; i < STD_TIMING; i++, block += STD_TIMING_DESCRIPTION_SIZE) num += get_std_timing(block, &mode[num]); dbg(" Detailed Timings\r\n"); block = edid + DETAILED_TIMING_DESCRIPTIONS_START; for (i = 0; i < 4; i++, block+= DETAILED_TIMING_DESCRIPTION_SIZE) { int first = 1; if (block[0] == 0x00 && block[1] == 0x00) { if (block[3] == 0xfa) num += get_dst_timing(block + 5, &mode[num]); } else { get_detailed_timing(block, &mode[num]); if (first) { mode[num].flag |= FB_MODE_IS_FIRST; first = 0; } num++; } } /* Yikes, EDID data is totally useless */ if (!num) { fb_destroy_modedb(mode); return NULL; } *dbsize = num; // m = Funcs_malloc(num * sizeof(struct fb_videomode), 3); m = alloc_db(num); if (!m) return mode; memcpy(m, mode, num * sizeof(struct fb_videomode)); fb_destroy_modedb(mode); return m; } static int fb_get_monitor_limits(unsigned char *edid, struct fb_monspecs *specs) { int i; int retval = 1; unsigned char *block; block = edid + DETAILED_TIMING_DESCRIPTIONS_START; dbg(" Monitor Operating Limits: "); for (i = 0; i < 4; i++, block += DETAILED_TIMING_DESCRIPTION_SIZE) { if (edid_is_limits_block(block)) { specs->hfmin = H_MIN_RATE * 1000; specs->hfmax = H_MAX_RATE * 1000; specs->vfmin = V_MIN_RATE; specs->vfmax = V_MAX_RATE; specs->dclkmax = MAX_PIXEL_CLOCK * 1000000; specs->gtf = (GTF_SUPPORT) ? 1 : 0; retval = 0; dbg("From EDID\r\n"); break; } } /* estimate monitor limits based on modes supported */ if (retval) { struct fb_videomode *modes; int num_modes; int i; int hz; int hscan; int pixclock; modes = fb_create_modedb(edid, &num_modes); if (!modes) { dbg("None Available\r\n"); return 1; } retval = 0; for (i = 0; i < num_modes; i++) { hz = modes[i].refresh; pixclock = PICOS2KHZ(modes[i].pixclock) * 1000; hscan = (modes[i].yres * 105 * hz + 5000)/100; if (specs->dclkmax == 0 || specs->dclkmax < pixclock) specs->dclkmax = pixclock; if (specs->dclkmin == 0 || specs->dclkmin > pixclock) specs->dclkmin = pixclock; if (specs->hfmax == 0 || specs->hfmax < hscan) specs->hfmax = hscan; if (specs->hfmin == 0 || specs->hfmin > hscan) specs->hfmin = hscan; if (specs->vfmax == 0 || specs->vfmax < hz) specs->vfmax = hz; if (specs->vfmin == 0 || specs->vfmin > hz) specs->vfmin = hz; } dbg("Extrapolated\r\n"); fb_destroy_modedb(modes); } dbg(" H: %d - %d kHz V: %d - %d kHz, DCLK: %d MHz\r\n", specs->hfmin / 1000, specs->hfmax / 1000, specs->vfmin, specs->vfmax, specs->dclkmax / 1000000); return retval; } static void get_monspecs(unsigned char *edid, struct fb_monspecs *specs) { unsigned char c, *block; block = edid + EDID_STRUCT_DISPLAY; fb_get_monitor_limits(edid, specs); c = block[0] & 0x80; specs->input = 0; if (c) { specs->input |= FB_DISP_DDI; dbg(" Digital Display Input"); } else { switch ((block[0] & 0x60) >> 5) { case 0: //dbg(" Analog Display Input: Input Voltage - 0.700V/0.300V"); specs->input |= FB_DISP_ANA_700_300; break; case 1: //dbg("0.714V/0.286V"); specs->input |= FB_DISP_ANA_714_286; break; case 2: //dbg("1.000V/0.400V"); specs->input |= FB_DISP_ANA_1000_400; break; case 3: //dbg("0.700V/0.000V"); specs->input |= FB_DISP_ANA_700_000; break; } } // dbg("Sync: "); c = block[0] & 0x10; if (c) { dbg(" Configurable signal level\r\n"); } c = block[0] & 0x0f; specs->signal = 0; if (c & 0x10) { //DPRINT("Blank to Blank "); specs->signal |= FB_SIGNAL_BLANK_BLANK; } if (c & 0x08) { //DPRINT("Separate "); specs->signal |= FB_SIGNAL_SEPARATE; } if (c & 0x04) { //DPRINT("Composite "); specs->signal |= FB_SIGNAL_COMPOSITE; } if (c & 0x02) { //DPRINT("Sync on Green "); specs->signal |= FB_SIGNAL_SYNC_ON_GREEN; } if (c & 0x01) { // DPRINT("Serration on "); specs->signal |= FB_SIGNAL_SERRATION_ON; } specs->max_x = block[1]; specs->max_y = block[2]; c = block[3]; specs->gamma = c+100; dbg(" Gamma %d\r\n: ",specs->gamma / 100); get_dpms_capabilities(block[4], specs); switch ((block[4] & 0x18) >> 3) { case 0: dbg(" Monochrome/Grayscale\r\n"); specs->input |= FB_DISP_MONO; break; case 1: dbg(" RGB Color Display\r\n"); specs->input |= FB_DISP_RGB; break; case 2: dbg(" Non-RGB Multicolor Display\r\n"); specs->input |= FB_DISP_MULTI; break; default: dbg(" Unknown\r\n"); specs->input |= FB_DISP_UNKNOWN; break; } get_chroma(block, specs); specs->misc = 0; c = block[4] & 0x7; if (c & 0x04) { dbg(" Default color format is primary\r\n"); specs->misc |= FB_MISC_PRIM_COLOR; } if (c & 0x02) { dbg(" First DETAILED Timing is preferred\r\n"); specs->misc |= FB_MISC_1ST_DETAIL; } if (c & 0x01) { dbg(" Display is GTF capable\r\n"); specs->gtf = 1; } } static int edid_is_timing_block(unsigned char *block) { if ((block[0] != 0x00) || (block[1] != 0x00) || (block[2] != 0x00) || (block[4] != 0x00)) return 1; else return 0; } int fb_parse_edid(unsigned char *edid, struct fb_var_screeninfo *var) { int32_t i; unsigned char *block; if (edid == NULL || var == NULL) return 1; if (!(edid_checksum(edid))) return 1; if (!(edid_check_header(edid))) return 1; block = edid + DETAILED_TIMING_DESCRIPTIONS_START; for (i = 0; i < 4; i++, block += DETAILED_TIMING_DESCRIPTION_SIZE) { if (edid_is_timing_block(block)) { var->xres = var->xres_virtual = H_ACTIVE; var->yres = var->yres_virtual = V_ACTIVE; var->height = var->width = -1; var->right_margin = H_SYNC_OFFSET; var->left_margin = (H_ACTIVE + H_BLANKING) - (H_ACTIVE + H_SYNC_OFFSET + H_SYNC_WIDTH); var->upper_margin = V_BLANKING - V_SYNC_OFFSET - V_SYNC_WIDTH; var->lower_margin = V_SYNC_OFFSET; var->hsync_len = H_SYNC_WIDTH; var->vsync_len = V_SYNC_WIDTH; var->pixclock = PIXEL_CLOCK; var->pixclock /= 1000; var->pixclock = KHZ2PICOS(var->pixclock); if (HSYNC_POSITIVE) var->sync |= FB_SYNC_HOR_HIGH_ACT; if (VSYNC_POSITIVE) var->sync |= FB_SYNC_VERT_HIGH_ACT; return 0; } } dbg("edid no timing block\r\n"); return 1; } void fb_edid_to_monspecs(unsigned char *edid, struct fb_monspecs *specs) { unsigned char *block; int i; if (edid == NULL) return; if (!(edid_checksum(edid))) return; if (!(edid_check_header(edid))) return; if (specs->modedb != NULL) fb_destroy_modedb(specs->modedb); memset(specs, 0, sizeof(struct fb_monspecs)); specs->version = edid[EDID_STRUCT_VERSION]; specs->revision = edid[EDID_STRUCT_REVISION]; dbg("========================================\r\n"); dbg("Display Information (EDID)\r\n"); dbg("========================================\r\n"); dbg(" EDID Version %d.%d\r\n", specs->version, specs->revision); parse_vendor_block(edid + ID_MANUFACTURER_NAME, specs); block = edid + DETAILED_TIMING_DESCRIPTIONS_START; for (i = 0; i < 4; i++, block += DETAILED_TIMING_DESCRIPTION_SIZE) { if (edid_is_serial_block(block)) { copy_string(block, specs->serial_no); dbg(" Serial Number: %d\r\n", specs->serial_no); } else if (edid_is_ascii_block(block)) { copy_string(block, specs->ascii); //DPRINT(" ASCII Block: "); //DPRINT((void *)specs->ascii); //DPRINT("\r\n"); } else if (edid_is_monitor_block(block)) { copy_string(block, specs->monitor); //DPRINT(" Monitor Name: "); //DPRINT((void *)specs->monitor); //DPRINT("\r\n"); } } //DPRINT(" Display Characteristics:\r\n"); get_monspecs(edid, specs); specs->modedb = fb_create_modedb(edid, (int *) &specs->modedb_len); dbg("========================================\r\n"); } /* * VESA Generalized Timing Formula (GTF) */ #define FLYBACK 550 #define V_FRONTPORCH 1 #define H_OFFSET 40 #define H_SCALEFACTOR 20 #define H_BLANKSCALE 128 #define H_GRADIENT 600 #define C_VAL 30 #define M_VAL 300 struct __fb_timings { unsigned long dclk; unsigned long hfreq; unsigned long vfreq; unsigned long hactive; unsigned long vactive; unsigned long hblank; unsigned long vblank; unsigned long htotal; unsigned long vtotal; }; /** * fb_get_vblank - get vertical blank time * @hfreq: horizontal freq * * DESCRIPTION: * vblank = right_margin + vsync_len + left_margin * * given: right_margin = 1 (V_FRONTPORCH) * vsync_len = 3 * flyback = 550 * * flyback * hfreq * left_margin = --------------- - vsync_len * 1000000 */ static unsigned long fb_get_vblank(unsigned long hfreq) { unsigned long vblank; vblank = (hfreq * FLYBACK)/1000; vblank = (vblank + 500)/1000; return vblank + V_FRONTPORCH; } /** * fb_get_hblank_by_freq - get horizontal blank time given hfreq * @hfreq: horizontal freq * @xres: horizontal resolution in pixels * * DESCRIPTION: * * xres * duty_cycle * hblank = ------------------ * 100 - duty_cycle * * duty cycle = percent of htotal assigned to inactive display * duty cycle = C - (M/Hfreq) * * where: C = ((offset - scale factor) * blank_scale) * -------------------------------------- + scale factor * 256 * M = blank_scale * gradient * */ static unsigned long fb_get_hblank_by_hfreq(unsigned long hfreq, unsigned long xres) { unsigned long c_val, m_val, duty_cycle, hblank; c_val = (((H_OFFSET - H_SCALEFACTOR) * H_BLANKSCALE)/256 + H_SCALEFACTOR) * 1000; m_val = (H_BLANKSCALE * H_GRADIENT)/256; m_val = (m_val * 1000000)/hfreq; duty_cycle = c_val - m_val; hblank = (xres * duty_cycle)/(100000 - duty_cycle); return hblank; } /* Quick integer square root using binomial theorem (from Dr. Dobbs journal) */ static int32_t int32_t_sqrt(int32_t N) { unsigned long l2, u, v, u2, n; if (N < 2) return N; u = N; l2 = 0; /* 1/2 * log_2 N = highest bit in the result */ while ((u >>= 2)) l2++; u = 1L << l2; v = u; u2 = u << l2; while (l2--) { v >>= 1; n = (u + u + v) << l2; n += u2; if (n <= N) { u += v; u2 = n; } } return u; } /** * fb_get_hblank_by_dclk - get horizontal blank time given pixelclock * @dclk: pixelclock in Hz * @xres: horizontal resolution in pixels * * DESCRIPTION: * * xres * duty_cycle * hblank = ------------------ * 100 - duty_cycle * * duty cycle = percent of htotal assigned to inactive display * duty cycle = C - (M * h_period) * * where: h_period = SQRT(100 - C + (0.4 * xres * M)/dclk) + C - 100 * ----------------------------------------------- * 2 * M * M = 300; * C = 30; */ static unsigned long fb_get_hblank_by_dclk(unsigned long dclk, unsigned long xres) { unsigned long duty_cycle, h_period, hblank; dclk /= 1000; h_period = 100 - C_VAL; h_period *= h_period; h_period += (M_VAL * xres * 2 * 1000)/(5 * dclk); h_period *=10000; h_period = int32_t_sqrt(h_period); h_period -= (100 - C_VAL) * 100; h_period *= 1000; h_period /= 2 * M_VAL; duty_cycle = C_VAL * 1000 - (M_VAL * h_period)/100; hblank = (xres * duty_cycle)/(100000 - duty_cycle) + 8; hblank &= ~15; return hblank; } /** * fb_get_hfreq - estimate hsync * @vfreq: vertical refresh rate * @yres: vertical resolution * * DESCRIPTION: * * (yres + front_port) * vfreq * 1000000 * hfreq = ------------------------------------- * (1000000 - (vfreq * FLYBACK) * */ static unsigned long fb_get_hfreq(unsigned long vfreq, unsigned long yres) { unsigned long divisor, hfreq; divisor = (1000000 - (vfreq * FLYBACK))/1000; hfreq = (yres + V_FRONTPORCH) * vfreq * 1000; return hfreq / divisor; } static void fb_timings_vfreq(struct __fb_timings *timings) { timings->hfreq = fb_get_hfreq(timings->vfreq, timings->vactive); timings->vblank = fb_get_vblank(timings->hfreq); timings->vtotal = timings->vactive + timings->vblank; timings->hblank = fb_get_hblank_by_hfreq(timings->hfreq, timings->hactive); timings->htotal = timings->hactive + timings->hblank; timings->dclk = timings->htotal * timings->hfreq; } static void fb_timings_hfreq(struct __fb_timings *timings) { timings->vblank = fb_get_vblank(timings->hfreq); timings->vtotal = timings->vactive + timings->vblank; timings->vfreq = timings->hfreq/timings->vtotal; timings->hblank = fb_get_hblank_by_hfreq(timings->hfreq, timings->hactive); timings->htotal = timings->hactive + timings->hblank; timings->dclk = timings->htotal * timings->hfreq; } static void fb_timings_dclk(struct __fb_timings *timings) { timings->hblank = fb_get_hblank_by_dclk(timings->dclk, timings->hactive); timings->htotal = timings->hactive + timings->hblank; timings->hfreq = timings->dclk/timings->htotal; timings->vblank = fb_get_vblank(timings->hfreq); timings->vtotal = timings->vactive + timings->vblank; timings->vfreq = timings->hfreq/timings->vtotal; } /* * fb_get_mode - calculates video mode using VESA GTF * @flags: if: 0 - maximize vertical refresh rate * 1 - vrefresh-driven calculation; * 2 - hscan-driven calculation; * 3 - pixelclock-driven calculation; * @val: depending on @flags, ignored, vrefresh, hsync or pixelclock * @var: pointer to fb_var_screeninfo * @info: pointer to fb_info * * DESCRIPTION: * Calculates video mode based on monitor specs using VESA GTF. * The GTF is best for VESA GTF compliant monitors but is * specifically formulated to work for older monitors as well. * * If @flag==0, the function will attempt to maximize the * refresh rate. Otherwise, it will calculate timings based on * the flag and accompanying value. * * If FB_IGNOREMON bit is set in @flags, monitor specs will be * ignored and @var will be filled with the calculated timings. * * All calculations are based on the VESA GTF Spreadsheet * available at VESA's public ftp (http://www.vesa.org). * * NOTES: * The timings generated by the GTF will be different from VESA * DMT. It might be a good idea to keep a table of standard * VESA modes as well. The GTF may also not work for some displays, * such as, and especially, analog TV. * * REQUIRES: * A valid info->monspecs, otherwise 'safe numbers' will be used. */ int32_t fb_get_mode(int32_t flags, uint32_t val, struct fb_var_screeninfo *var, struct fb_info *info) { struct __fb_timings timings; unsigned long interlace = 1, dscan = 1; unsigned long hfmin, hfmax, vfmin, vfmax, dclkmin, dclkmax; /* * If monspecs are invalid, use values that are enough * for 640x480@60 */ if (!info->monspecs.hfmax || !info->monspecs.vfmax || !info->monspecs.dclkmax || info->monspecs.hfmax < info->monspecs.hfmin || info->monspecs.vfmax < info->monspecs.vfmin || info->monspecs.dclkmax < info->monspecs.dclkmin) { hfmin = 29000; hfmax = 30000; vfmin = 60; vfmax = 60; dclkmin = 0; dclkmax = 25000000; } else { hfmin = info->monspecs.hfmin; hfmax = info->monspecs.hfmax; vfmin = info->monspecs.vfmin; vfmax = info->monspecs.vfmax; dclkmin = info->monspecs.dclkmin; dclkmax = info->monspecs.dclkmax; } memset(&timings, 0, sizeof(struct __fb_timings)); timings.hactive = var->xres; timings.vactive = var->yres; if (var->vmode & FB_VMODE_INTERLACED) { timings.vactive /= 2; interlace = 2; } if (var->vmode & FB_VMODE_DOUBLE) { timings.vactive *= 2; dscan = 2; } switch (flags & ~FB_IGNOREMON) { case FB_MAXTIMINGS: /* maximize refresh rate */ timings.hfreq = hfmax; fb_timings_hfreq(&timings); if (timings.vfreq > vfmax) { timings.vfreq = vfmax; fb_timings_vfreq(&timings); } if (timings.dclk > dclkmax) { timings.dclk = dclkmax; fb_timings_dclk(&timings); } break; case FB_VSYNCTIMINGS: /* vrefresh driven */ timings.vfreq = val; fb_timings_vfreq(&timings); break; case FB_HSYNCTIMINGS: /* hsync driven */ timings.hfreq = val; fb_timings_hfreq(&timings); break; case FB_DCLKTIMINGS: /* pixelclock driven */ timings.dclk = PICOS2KHZ(val) * 1000; fb_timings_dclk(&timings); break; default: return -1; // -EINVAL; } if (!(flags & FB_IGNOREMON) && (timings.vfreq < vfmin || timings.vfreq > vfmax || timings.hfreq < hfmin || timings.hfreq > hfmax || timings.dclk < dclkmin || timings.dclk > dclkmax)) return -1; //-EINVAL; var->pixclock = KHZ2PICOS(timings.dclk/1000); var->hsync_len = (timings.htotal * 8)/100; var->right_margin = (timings.hblank/2) - var->hsync_len; var->left_margin = timings.hblank - var->right_margin - var->hsync_len; var->vsync_len = (3 * interlace)/dscan; var->lower_margin = (1 * interlace)/dscan; var->upper_margin = (timings.vblank * interlace)/dscan - (var->vsync_len + var->lower_margin); return 0; } /* * fb_validate_mode - validates var against monitor capabilities * @var: pointer to fb_var_screeninfo * @info: pointer to fb_info * * DESCRIPTION: * Validates video mode against monitor capabilities specified in * info->monspecs. * * REQUIRES: * A valid info->monspecs. */ int32_t fb_validate_mode(const struct fb_var_screeninfo *var, struct fb_info *info) { unsigned long hfreq, vfreq, htotal, vtotal, pixclock; unsigned long hfmin, hfmax, vfmin, vfmax, dclkmin, dclkmax; /* * If monspecs are invalid, use values that are enough * for 640x480@60 */ if (!info->monspecs.hfmax || !info->monspecs.vfmax || !info->monspecs.dclkmax || info->monspecs.hfmax < info->monspecs.hfmin || info->monspecs.vfmax < info->monspecs.vfmin || info->monspecs.dclkmax < info->monspecs.dclkmin) { hfmin = 29000; hfmax = 30000; vfmin = 60; vfmax = 60; dclkmin = 0; dclkmax = 25000000; } else { hfmin = info->monspecs.hfmin; hfmax = info->monspecs.hfmax; vfmin = info->monspecs.vfmin; vfmax = info->monspecs.vfmax; dclkmin = info->monspecs.dclkmin; dclkmax = info->monspecs.dclkmax; } if (!var->pixclock) return -1; // -EINVAL; pixclock = PICOS2KHZ(var->pixclock) * 1000; htotal = var->xres + var->right_margin + var->hsync_len + var->left_margin; vtotal = var->yres + var->lower_margin + var->vsync_len + var->upper_margin; if (var->vmode & FB_VMODE_INTERLACED) vtotal /= 2; if (var->vmode & FB_VMODE_DOUBLE) vtotal *= 2; hfreq = pixclock/htotal; vfreq = hfreq/vtotal; return (vfreq < vfmin || vfreq > vfmax || hfreq < hfmin || hfreq > hfmax || pixclock < dclkmin || pixclock > dclkmax) ? -1 /* -EINVAL */ : 0; }