/* * * Most of this source has been derived from the Linux USB * project: * (C) Copyright Linus Torvalds 1999 * (C) Copyright Johannes Erdfelt 1999-2001 * (C) Copyright Andreas Gal 1999 * (C) Copyright Gregory P. Smith 1999 * (C) Copyright Deti Fliegl 1999 (new USB architecture) * (C) Copyright Randy Dunlap 2000 * (C) Copyright David Brownell 2000 (kernel hotplug, usb_device_id) * (C) Copyright Yggdrasil Computing, Inc. 2000 * (usb_device_id matching changes by Adam J. Richter) * * Adapted for U-Boot: * (C) Copyright 2001 Denis Peter, MPL AG Switzerland * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * */ /* * How it works: * * Since this is a bootloader, the devices will not be automatic * (re)configured on hotplug, but after a restart of the USB the * device should work. * * For each transfer (except "Interrupt") we wait for completion. */ #include #include "bas_string.h" #include "bas_printf.h" #include "util.h" /* for byte swap funcs */ #include "wait.h" #include #include "usb.h" #include "usb_hub.h" #define DEBUG_USB #ifdef DEBUG_USB #define dbg(format, arg...) do { xprintf("DEBUG: %s(): " format, __FUNCTION__, ##arg); } while (0) #else #define dbg(format, arg...) do { ; } while (0) #endif /* DEBUG_USB */ #define err(format, arg...) do { xprintf("ERROR: %s(): " format, __FUNCTION__, ##arg); } while (0) #define info(format, arg...) do { xprintf("INFO: %s(): " format, __FUNCTION__, ##arg); } while (0) struct hci { /* ------- common part -------- */ long handle; /* PCI BIOS */ const struct pci_device_id *ent; int usbnum; /* ---- end of common part ---- */ }; static struct usb_device *usb_dev; int bus_index; static int dev_index[USB_MAX_BUS]; static struct hci *controller_priv[USB_MAX_BUS]; static int asynch_allowed; static struct devrequest *setup_packet; char usb_started; /* flag for the started/stopped USB status */ /* * some forward declarations... */ void usb_scan_devices(void *priv); /* * Init USB device controller */ int usb_init(int32_t handle, const struct pci_device_id *ent) { struct hci *priv; int res = 0; bus_index = 0; if (bus_index >= USB_MAX_BUS) { dbg("bus_index >= USB_MAX_BUS"); return -1; } dev_index[bus_index] = 0; asynch_allowed = 1; if (handle && (ent != NULL)) { if (driver_mem_init()) { usb_started = 0; dbg("driver_mem_init failed\r\n"); return -1; /* out of memory */ } if (usb_dev == NULL) { usb_dev = (struct usb_device *) driver_mem_alloc(sizeof(struct usb_device) * USB_MAX_BUS * USB_MAX_DEVICE); } if (usb_dev == NULL) { usb_started = 0; dbg("could not allocate memory\r\n"); return -1; /* out of memory */ } } else /* restart */ { int i; res = 0; for (i = 0; i < USB_MAX_BUS; i++) { if (controller_priv[i] != NULL) { long handle = controller_priv[i]->handle; if (handle) { res |= usb_init(handle, NULL); /* FIXME: recursive call!? */ } } } return res; } usb_hub_reset(bus_index); /* init low_level USB */ switch(ent->class) { case PCI_CLASS_SERIAL_USB_UHCI: //res = uhci_usb_lowlevel_init(handle, ent, &priv); dbg("sorry, no uhci driver available\r\n"); break; case PCI_CLASS_SERIAL_USB_OHCI: dbg("initialize ohci host controller interface\r\n"); res = ohci_usb_lowlevel_init(handle, ent, (void *) &priv); break; case PCI_CLASS_SERIAL_USB_EHCI: dbg("initialize ehci host controller interface\r\n"); res = ehci_usb_lowlevel_init(handle, ent, (void *) &priv); break; default: res = -1; break; } if (!res) { /* * if lowlevel init is OK, scan the bus for devices * i.e. search HUBs and configure them */ if (setup_packet == NULL) { setup_packet = driver_mem_alloc(sizeof(struct devrequest)); if (setup_packet == NULL) { usb_started = 0; dbg("could not allocate memory\r\n"); return -1; /* no memory, no USB */ } } xprintf("Scanning bus for devices... "); controller_priv[bus_index] = priv; controller_priv[bus_index]->usbnum = bus_index; usb_scan_devices(priv); bus_index++; usb_started = 1; xprintf("done.\r\n"); return 0; } else { xprintf("\r\nError, couldn't init Lowlevel part\r\n"); usb_started = 0; return -1; } } /* * Stop USB. This stops the LowLevel Part and deregisters USB devices. */ int usb_stop(void) { int i; int res = 0; if (usb_started) { asynch_allowed = 1; usb_started = 0; usb_hub_reset(bus_index); driver_mem_free(setup_packet); for (i = 0; i < USB_MAX_BUS; i++) { struct hci *priv = controller_priv[i]; if (priv != NULL) { switch(priv->ent->class) { #ifdef CONFIG_USB_UHCI case PCI_CLASS_SERIAL_USB_UHCI: res |= uhci_usb_lowlevel_stop(priv); break; #endif #ifdef CONFIG_USB_OHCI case PCI_CLASS_SERIAL_USB_OHCI: res |= ohci_usb_lowlevel_stop(priv); break; #endif #ifdef CONFIG_USB_EHCI case PCI_CLASS_SERIAL_USB_EHCI: res |= ehci_usb_lowlevel_stop(priv); break; #endif } } } bus_index = 0; driver_mem_release(); /* release all driver mem */ } return res; } void usb_enable_interrupt(int enable) { ohci_usb_enable_interrupt(enable); ehci_usb_enable_interrupt(enable); } /* * disables the asynch behaviour of the control message. This is used for data * transfers that uses the exclusiv access to the control and bulk messages. */ void usb_disable_asynch(int disable) { asynch_allowed = !disable; } /* * Message wrappers. * */ /* * submits an Interrupt Message */ int usb_submit_int_msg(struct usb_device *dev, uint32_t pipe, void *buffer, int transfer_len, int interval) { struct hci *priv = (struct hci *) dev->priv_hcd; int ret = 0; switch(priv->ent->class) { case PCI_CLASS_SERIAL_USB_OHCI: ret = ohci_submit_int_msg(dev, pipe, buffer, transfer_len, interval); break; case PCI_CLASS_SERIAL_USB_EHCI: ret = ehci_submit_int_msg(dev, pipe, buffer, transfer_len, interval); break; default: ret = -1; break; } return ret; } /* * submits a control message and waits for completion (at least timeout * 1ms) * If timeout is 0, we don't wait for completion (used for example to set and * clear keyboards LEDs). For data transfers, (storage transfers) we don't * allow control messages with 0 timeout, by previousely resetting the flag * asynch_allowed (usb_disable_asynch(1)). * returns the transfered length if OK or -1 if error. The transfered length * and the current status are stored in the dev->act_len and dev->status. */ int usb_control_msg(struct usb_device *dev, unsigned int pipe, unsigned char request, unsigned char requesttype, unsigned short value, unsigned short index, void *data, unsigned short size, int timeout) { struct hci *priv = (struct hci *) dev->priv_hcd; if ((timeout == 0) && (!asynch_allowed)) { /* request for a asynch control pipe is not allowed */ dbg("request for an async control pipe is not allowed\r\n"); return -1; } /* set setup command */ setup_packet->requesttype = requesttype; setup_packet->request = request; setup_packet->value = swpw(value); setup_packet->index = swpw(index); setup_packet->length = swpw(size); dbg("usb_control_msg: request: 0x%X, requesttype: 0x%X, value 0x%X index 0x%X length 0x%X\r\n", request, requesttype, value, index, size); switch(priv->ent->class) { case PCI_CLASS_SERIAL_USB_OHCI: dev->status = USB_ST_NOT_PROC; /* not yet processed */ ohci_submit_control_msg(dev, pipe, data, size, setup_packet); break; case PCI_CLASS_SERIAL_USB_EHCI: dev->status = USB_ST_NOT_PROC; /* not yet processed */ ehci_submit_control_msg(dev, pipe, data, size, setup_packet); break; default: return -1; } if (timeout == 0) { return (int) size; } if (dev->status != 0) { /* * Let's wait a while for the timeout to elapse. * It has no real use, but it keeps the interface happy. */ return -1; } return dev->act_len; } /* * submits bulk message, and waits for completion. returns 0 if Ok or * -1 if Error. * synchronous behavior */ int usb_bulk_msg(struct usb_device *dev, unsigned int pipe, void *data, int len, int *actual_length, int timeout) { struct hci *priv = (struct hci *) dev->priv_hcd; if (len < 0) { return -1; } switch(priv->ent->class) { case PCI_CLASS_SERIAL_USB_OHCI: dev->status = USB_ST_NOT_PROC; /* not yet processed */ ohci_submit_bulk_msg(dev, pipe, data, len); break; case PCI_CLASS_SERIAL_USB_EHCI: dev->status = USB_ST_NOT_PROC; /* not yet processed */ ehci_submit_bulk_msg(dev, pipe, data, len); break; default: return -1; } while (timeout--) { if (!((volatile uint32_t) dev->status & USB_ST_NOT_PROC)) /* FIXME: this volatile does nothing! */ break; wait(1); } *actual_length = dev->act_len; if (dev->status == 0) { return 0; } else { return -1; } } /* * Max Packet stuff */ /* * returns the max packet size, depending on the pipe direction and * the configurations values */ int usb_maxpacket(struct usb_device *dev, uint32_t pipe) { /* direction is out -> use emaxpacket out */ if ((pipe & USB_DIR_IN) == 0) { return dev->epmaxpacketout[((pipe >> 15) & 0xf)]; } else { return dev->epmaxpacketin[((pipe >> 15) & 0xf)]; } } /* * The routine usb_set_maxpacket_ep() is extracted from the loop of routine * usb_set_maxpacket(), because the optimizer of GCC 4.x chokes on this routine * when it is inlined in 1 single routine. What happens is that the register r3 * is used as loop-count 'i', but gets overwritten later on. * This is clearly a compiler bug, but it is easier to workaround it here than * to update the compiler (Occurs with at least several GCC 4.{1,2},x * CodeSourcery compilers like e.g. 2007q3, 2008q1, 2008q3 lite editions on ARM) * * We probably do not need that for Coldfire - at least I hope so. */ static void usb_set_maxpacket_ep(struct usb_device *dev, struct usb_endpoint_descriptor *ep) { int b; b = ep->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; if ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_CONTROL) { /* Control => bidirectional */ dev->epmaxpacketout[b] = ep->wMaxPacketSize; dev->epmaxpacketin[b] = ep->wMaxPacketSize; dbg("##Control EP epmaxpacketout/in[%d] = %d\r\n", b, dev->epmaxpacketin[b]); } else { if ((ep->bEndpointAddress & 0x80) == 0) { /* OUT Endpoint */ if (ep->wMaxPacketSize > dev->epmaxpacketout[b]) { dev->epmaxpacketout[b] = ep->wMaxPacketSize; dbg("##EP epmaxpacketout[%d] = %d\r\n", b, dev->epmaxpacketout[b]); } } else { /* IN Endpoint */ if (ep->wMaxPacketSize > dev->epmaxpacketin[b]) { dev->epmaxpacketin[b] = ep->wMaxPacketSize; dbg("##EP epmaxpacketin[%d] = %d\r\n", b, dev->epmaxpacketin[b]); } } /* if out */ } /* if control */ } /* * set the max packed value of all endpoints in the given configuration */ int usb_set_maxpacket(struct usb_device *dev) { int i; int ii; for (i = 0; i < dev->config.bNumInterfaces; i++) { for (ii = 0; ii < dev->config.if_desc[i].bNumEndpoints; ii++) { usb_set_maxpacket_ep(dev,&dev->config.if_desc[i].ep_desc[ii]); } } return 0; } /* * Parse the config, located in buffer, and fills the dev->config structure. * Note that all little/big endian swapping are done automatically. */ int usb_parse_config(struct usb_device *dev, unsigned char *buffer, int cfgno) { struct usb_descriptor_header *head; int index; int ifno; int epno; int curr_if_num; ifno = -1; epno = -1; curr_if_num = -1; dev->configno = cfgno; head = (struct usb_descriptor_header *) &buffer[0]; if (head->bDescriptorType != USB_DT_CONFIG) { dbg(" ERROR: NOT USB_CONFIG_DESC %x\r\n", head->bDescriptorType); return -1; } memcpy(&dev->config, buffer, buffer[0]); dev->config.wTotalLength = swpw(dev->config.wTotalLength); dev->config.no_of_if = 0; index = dev->config.bLength; /* * Ok the first entry must be a configuration entry, * now process the others */ head = (struct usb_descriptor_header *) &buffer[index]; while (index + 1 < dev->config.wTotalLength) { switch (head->bDescriptorType) { case USB_DT_INTERFACE: if (((struct usb_interface_descriptor *) &buffer[index])->bInterfaceNumber != curr_if_num) { /* this is a new interface, copy new desc */ ifno = dev->config.no_of_if; dev->config.no_of_if++; memcpy(&dev->config.if_desc[ifno], &buffer[index], buffer[index]); dev->config.if_desc[ifno].no_of_ep = 0; dev->config.if_desc[ifno].num_altsetting = 1; curr_if_num = dev->config.if_desc[ifno].bInterfaceNumber; } else { /* found alternate setting for the interface */ dev->config.if_desc[ifno].num_altsetting++; } break; case USB_DT_ENDPOINT: epno = dev->config.if_desc[ifno].no_of_ep; /* found an endpoint */ dev->config.if_desc[ifno].no_of_ep++; memcpy(&dev->config.if_desc[ifno].ep_desc[epno], &buffer[index], buffer[index]); dev->config.if_desc[ifno].ep_desc[epno].wMaxPacketSize = swpw(dev->config.if_desc[ifno].ep_desc[epno].wMaxPacketSize); dbg("if %d, ep %d\r\n", ifno, epno); break; default: if (head->bLength == 0) return 1; dbg("unknown Descriptor Type : %x\r\n", head->bDescriptorType); #ifdef USB_DEBUG { unsigned char *ch; int i; ch = (unsigned char *) head; for (i = 0; i < head->bLength; i++) { dbg(" %02X", *ch++); } dbg("\r\n"); } #endif /* USB_DEBUG */ break; } index += head->bLength; head = (struct usb_descriptor_header *) &buffer[index]; } return 1; } /* * Clears an endpoint * endp: endpoint number in bits 0-3; * direction flag in bit 7 (1 = IN, 0 = OUT) */ int usb_clear_halt(struct usb_device *dev, int pipe) { int result; int endp = usb_pipeendpoint(pipe) | (usb_pipein(pipe) << 7); result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 0, endp, NULL, 0, USB_CNTL_TIMEOUT * 3); /* don't clear if failed */ if (result < 0) { return result; } /* * NOTE: we do not get status and verify reset was successful * as some devices are reported to lock up upon this check.. */ usb_endpoint_running(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe)); /* toggle is reset on clear */ usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0); return 0; } /* * get_descriptor type */ int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size) { int res; res = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, (type << 8) + index, 0, buf, size, USB_CNTL_TIMEOUT); return res; } /* * gets configuration cfgno and store it in the buffer */ int usb_get_configuration_no(struct usb_device *dev, unsigned char *buffer, int cfgno) { int result; unsigned int tmp; struct usb_config_descriptor *config; config = (struct usb_config_descriptor *) &buffer[0]; result = usb_get_descriptor(dev, USB_DT_CONFIG, cfgno, buffer, 9); if (result < 9) { if (result < 0) { dbg("unable to get descriptor, error %lX\r\n", dev->status); } else { dbg("config descriptor too short (expected %i, got %i)\n", 9, result); } return -1; } tmp = swpw(config->wTotalLength); if (tmp > USB_BUFSIZ) { dbg("usb_get_configuration_no: failed to get descriptor - too long: %d\r\n", tmp); return -1; } result = usb_get_descriptor(dev, USB_DT_CONFIG, cfgno, buffer, tmp); dbg("get_conf_no %d Result %d, wLength %d\r\n", cfgno, result, tmp); return result; } /* * set address of a device to the value in dev->devnum. * This can only be done by addressing the device via the default address (0) */ int usb_set_address(struct usb_device *dev) { int res; dbg("set address %d\r\n", dev->devnum); res = usb_control_msg(dev, usb_snddefctrl(dev), USB_REQ_SET_ADDRESS, 0, (dev->devnum), 0, NULL, 0, USB_CNTL_TIMEOUT); return res; } /* * set interface number to interface */ int usb_set_interface(struct usb_device *dev, int interface, int alternate) { struct usb_interface_descriptor *if_face = NULL; int ret, i; for (i = 0; i < dev->config.bNumInterfaces; i++) { if (dev->config.if_desc[i].bInterfaceNumber == interface) { if_face = &dev->config.if_desc[i]; break; } } if (!if_face) { dbg("selecting invalid interface %d", interface); return -1; } /* * We should return now for devices with only one alternate setting. * According to 9.4.10 of the Universal Serial Bus Specification * Revision 2.0 such devices can return with a STALL. This results in * some USB sticks timeouting during initialization and then being * unusable in U-Boot. */ if (if_face->num_altsetting == 1) { return 0; } ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, alternate, interface, NULL, 0, USB_CNTL_TIMEOUT * 5); if (ret < 0) { return ret; } return 0; } /* * set configuration number to configuration */ int usb_set_configuration(struct usb_device *dev, int configuration) { int res; dbg("set configuration %d\r\n", configuration); /* set setup command */ res = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), USB_REQ_SET_CONFIGURATION, 0, configuration, 0, NULL, 0, USB_CNTL_TIMEOUT); if (res == 0) { dev->toggle[0] = 0; dev->toggle[1] = 0; return 0; } else { return -1; } } /* * set protocol to protocol */ int usb_set_protocol(struct usb_device *dev, int ifnum, int protocol) { return usb_control_msg(dev, usb_sndctrlpipe(dev, 0), USB_REQ_SET_PROTOCOL, USB_TYPE_CLASS | USB_RECIP_INTERFACE, protocol, ifnum, NULL, 0, USB_CNTL_TIMEOUT); } /* * set idle */ int usb_set_idle(struct usb_device *dev, int ifnum, int duration, int report_id) { return usb_control_msg(dev, usb_sndctrlpipe(dev, 0), USB_REQ_SET_IDLE, USB_TYPE_CLASS | USB_RECIP_INTERFACE, (duration << 8) | report_id, ifnum, NULL, 0, USB_CNTL_TIMEOUT); } /* * get report */ int usb_get_report(struct usb_device *dev, int ifnum, unsigned char type, unsigned char id, void *buf, int size) { return usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), USB_REQ_GET_REPORT, USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE, (type << 8) + id, ifnum, buf, size, USB_CNTL_TIMEOUT); } /* * get class descriptor */ int usb_get_class_descriptor(struct usb_device *dev, int ifnum, unsigned char type, unsigned char id, void *buf, int size) { return usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), USB_REQ_GET_DESCRIPTOR, USB_RECIP_INTERFACE | USB_DIR_IN, (type << 8) + id, ifnum, buf, size, USB_CNTL_TIMEOUT); } /* * get string index in buffer */ int usb_get_string(struct usb_device *dev, unsigned short langid, unsigned char index, void *buf, int size) { int i; int result; for (i = 0; i < 3; ++i) { /* some devices are flaky */ result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, (USB_DT_STRING << 8) + index, langid, buf, size, USB_CNTL_TIMEOUT); if (result > 0) { break; } } return result; } static void usb_try_string_workarounds(unsigned char *buf, int *length) { int newlength; int oldlength = *length; for (newlength = 2; newlength + 1 < oldlength; newlength += 2) { char c = buf[newlength]; if ((c < ' ') || (c >= 127) || buf[newlength + 1]) break; } if (newlength > 2) { buf[0] = newlength; *length = newlength; } } static int usb_string_sub(struct usb_device *dev, unsigned int langid, unsigned int index, unsigned char *buf) { int rc; /* * Try to read the string descriptor by asking for the maximum * possible number of bytes */ rc = usb_get_string(dev, langid, index, buf, 255); /* * If that failed try to read the descriptor length, then * ask for just that many bytes */ if (rc < 2) { rc = usb_get_string(dev, langid, index, buf, 2); if (rc == 2) { rc = usb_get_string(dev, langid, index, buf, buf[0]); } } if (rc >= 2) { if (!buf[0] && !buf[1]) { usb_try_string_workarounds(buf, &rc); } /* There might be extra junk at the end of the descriptor */ if (buf[0] < rc) { rc = buf[0]; } rc = rc - (rc & 1); /* force a multiple of two */ } if (rc < 2) { rc = -1; } return rc; } /* * usb_string: * Get string index and translate it to ascii. * returns string length (> 0) or error (< 0) */ int usb_string(struct usb_device *dev, int index, char *buf, size_t size) { unsigned char *tbuf; int err; unsigned int u, idx; if (size <= 0 || !buf || !index) { return -1; } buf[0] = 0; tbuf = (unsigned char *) driver_mem_alloc(USB_BUFSIZ); if (tbuf == NULL) { dbg("usb_string: malloc failure\r\n"); return -1; } /* get langid for strings if it's not yet known */ if (!dev->have_langid) { err = usb_string_sub(dev, 0, 0, tbuf); if (err < 0) { dbg("error getting string descriptor 0 (error=%lx)\r\n", dev->status); driver_mem_free(tbuf); return -1; } else if (tbuf[0] < 4) { dbg("string descriptor 0 too short\r\n"); driver_mem_free(tbuf); return -1; } else { dev->have_langid = -1; dev->string_langid = tbuf[2] | (tbuf[3] << 8); /* always use the first langid listed */ dbg("USB device number %d default language ID 0x%x\r\n", dev->devnum, dev->string_langid); } } err = usb_string_sub(dev, dev->string_langid, index, tbuf); if (err < 0) { driver_mem_free(tbuf); return err; } size--; /* leave room for trailing NULL char in output buffer */ for (idx = 0, u = 2; u < err; u += 2) { if (idx >= size) { break; } if (tbuf[u + 1]) /* high byte */ { buf[idx++] = '?'; /* non-ASCII character */ } else { buf[idx++] = tbuf[u]; } } buf[idx] = 0; err = idx; driver_mem_free(tbuf); return err; } /* * USB device handling: * the USB device are static allocated [USB_MAX_DEVICE]. */ /* * Something got disconnected. Get rid of it, and all of its children. */ void usb_disconnect(struct usb_device **pdev) { struct usb_device *dev = *pdev; if (dev != NULL) { int i; dbg("USB %d disconnect on device %d\r\n", dev->parent->usbnum, dev->parent->devnum); dbg("USB %d disconnected, device number %d\r\n", dev->usbnum, dev->devnum); if (dev->deregister != NULL) { dev->deregister(dev); } /* Free up all the children.. */ for (i = 0; i < USB_MAXCHILDREN; i++) { if (dev->children[i] != NULL) { dbg("USB %d, disconnect children %d\r\n", dev->usbnum, dev->children[i]->devnum); usb_disconnect(&dev->children[i]); dev->children[i] = NULL; } } /* Free up the device itself, including its device number */ if (dev->devnum > 0) { dev_index[dev->usbnum]--; memset(dev, 0, sizeof(struct usb_device)); dev->devnum = -1; } *pdev = NULL; } } /* * returns a pointer to the device with the index [index]. * if the device is not assigned (dev->devnum==-1) returns NULL */ struct usb_device *usb_get_dev_index(int index, int index_bus) { struct usb_device *dev; if ((index_bus >= USB_MAX_BUS) || (index_bus < 0) || (index >= USB_MAX_DEVICE) || (index < 0)) { return NULL; } dev = &usb_dev[(index_bus * USB_MAX_DEVICE) + index]; if ((controller_priv[index_bus] == NULL) || (dev->devnum == -1)) { return NULL; } return dev; } /* * returns a pointer of a new device structure or NULL, if * no device struct is available */ struct usb_device *usb_alloc_new_device(int bus_index, void *priv) { int i; int index = dev_index[bus_index]; struct usb_device *dev; dbg("USB %d new device %d\r\n", bus_index, index); if (index >= USB_MAX_DEVICE) { dbg("ERROR, too many USB Devices, max=%d\r\n", USB_MAX_DEVICE); return NULL; } /* default Address is 0, real addresses start with 1 */ dev = &usb_dev[(bus_index * USB_MAX_DEVICE) + index]; dev->devnum = index + 1; dev->maxchild = 0; for (i = 0; i < USB_MAXCHILDREN; dev->children[i++] = NULL) ; dev->parent = NULL; dev->priv_hcd = priv; dev->usbnum = bus_index; dev_index[bus_index]++; return dev; } // #define CONFIG_LEGACY_USB_INIT_SEQ /* * By the time we get here, the device has gotten a new device ID * and is in the default state. We need to identify the thing and * get the ball rolling.. * * Returns 0 for success, != 0 for error. */ int usb_new_device(struct usb_device *dev) { int addr; int err; int tmp; unsigned char *tmpbuf; dbg("\r\n"); #ifndef CONFIG_LEGACY_USB_INIT_SEQ struct usb_device_descriptor *desc; int port = -1; struct usb_device *parent = dev->parent; unsigned short portstatus; #endif if (dev == NULL) { dbg("called with NULL device\r\n"); return 1; } /* We still haven't set the Address yet */ addr = dev->devnum; dev->devnum = 0; tmpbuf = (unsigned char *) driver_mem_alloc(USB_BUFSIZ); if (tmpbuf == NULL) { dbg("malloc failure\r\n"); return 1; } #ifdef CONFIG_LEGACY_USB_INIT_SEQ /* * this is the old and known way of initializing devices, it is * different than what Windows and Linux are doing. Windows and Linux * both retrieve 64 bytes while reading the device descriptor * Several USB stick devices report ERR: CTL_TIMEOUT, caused by an * invalid header while reading 8 bytes as device descriptor. */ dev->descriptor.bMaxPacketSize0 = 8; /* Start off at 8 bytes */ dev->maxpacketsize = PACKET_SIZE_8; dev->epmaxpacketin[0] = 8; dev->epmaxpacketout[0] = 8; err = usb_get_descriptor(dev, USB_DT_DEVICE, 0, &dev->descriptor, 8); if (err < 8) { dbg("\r\nUSB device not responding, giving up (status=%lX)\r\n", dev->status); driver_mem_free(tmpbuf); return 1; } #else /* * This is a Windows scheme of initialization sequence, with double * reset of the device (Linux uses the same sequence) * Some equipment is said to work only with such init sequence; this * patch is based on the work by Alan Stern: * http://sourceforge.net/mailarchive/forum.php? * thread_id=5729457&forum_id=5398 */ /* * send 64-byte GET-DEVICE-DESCRIPTOR request. Since the descriptor is * only 18 bytes long, this will terminate with a short packet. But if * the maxpacket size is 8 or 16 the device may be waiting to transmit * some more, or keeps on retransmitting the 8 byte header. */ desc = (struct usb_device_descriptor *) tmpbuf; dev->descriptor.bMaxPacketSize0 = 64; /* Start off at 64 bytes */ /* Default to 64 byte max packet size */ dev->maxpacketsize = PACKET_SIZE_64; dev->epmaxpacketin[0] = 64; dev->epmaxpacketout[0] = 64; err = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, 64); if (err < 0) { dbg("usb_new_device: usb_get_descriptor() failed\r\n"); driver_mem_free(tmpbuf); return 1; } dev->descriptor.bMaxPacketSize0 = desc->bMaxPacketSize0; /* find the port number we're at */ if (parent) { int j; for (j = 0; j < parent->maxchild; j++) { if (parent->children[j] == dev) { port = j; break; } } dbg("port = %d\r\n", port); if (port < 0) { dbg("usb_new_device: cannot locate device's port.\r\n"); driver_mem_free(tmpbuf); return 1; } /* reset the port for the second time */ err = hub_port_reset(dev->parent, port, &portstatus); if (err < 0) { dbg("\r\nCouldn't reset port %d\r\n", port); driver_mem_free(tmpbuf); return 1; } } #endif dev->epmaxpacketin[0] = dev->descriptor.bMaxPacketSize0; dev->epmaxpacketout[0] = dev->descriptor.bMaxPacketSize0; switch (dev->descriptor.bMaxPacketSize0) { case 8: dev->maxpacketsize = PACKET_SIZE_8; break; case 16: dev->maxpacketsize = PACKET_SIZE_16; break; case 32: dev->maxpacketsize = PACKET_SIZE_32; break; case 64: dev->maxpacketsize = PACKET_SIZE_64; break; } dev->devnum = addr; err = usb_set_address(dev); /* set address */ if (err < 0) { dbg("\r\nUSB device not accepting new address (error=%lX)\r\n", dev->status); driver_mem_free(tmpbuf); return 1; } wait(10); /* Let the SET_ADDRESS settle */ tmp = sizeof(dev->descriptor); err = usb_get_descriptor(dev, USB_DT_DEVICE, 0, &dev->descriptor, sizeof(dev->descriptor)); if (err < tmp) { if (err < 0) { dbg("unable to get device descriptor (error=%d)\r\n", err); } else { dbg("USB device descriptor short read (expected %i, got %i)\r\n", tmp, err); } driver_mem_free(tmpbuf); return 1; } /* correct values */ dev->descriptor.bcdUSB = swpw(dev->descriptor.bcdUSB); dev->descriptor.idVendor = swpw(dev->descriptor.idVendor); dev->descriptor.idProduct = swpw(dev->descriptor.idProduct); dev->descriptor.bcdDevice = swpw(dev->descriptor.bcdDevice); /* only support for one config for now */ usb_get_configuration_no(dev, &tmpbuf[0], 0); usb_parse_config(dev, &tmpbuf[0], 0); usb_set_maxpacket(dev); /* we set the default configuration here */ if (usb_set_configuration(dev, dev->config.bConfigurationValue)) { dbg("failed to set default configuration len %d, status %lX\r\n", dev->act_len, dev->status); driver_mem_free(tmpbuf); return -1; } dbg("new device strings: Mfr=%d, Product=%d, SerialNumber=%d\r\n", dev->descriptor.iManufacturer, dev->descriptor.iProduct, dev->descriptor.iSerialNumber); memset(dev->mf, 0, sizeof(dev->mf)); memset(dev->prod, 0, sizeof(dev->prod)); memset(dev->serial, 0, sizeof(dev->serial)); if (dev->descriptor.iManufacturer) { usb_string(dev, dev->descriptor.iManufacturer, dev->mf, sizeof(dev->mf)); } if (dev->descriptor.iProduct) { usb_string(dev, dev->descriptor.iProduct, dev->prod, sizeof(dev->prod)); } if (dev->descriptor.iSerialNumber) { usb_string(dev, dev->descriptor.iSerialNumber, dev->serial, sizeof(dev->serial)); } dbg("Manufacturer %s\r\n", dev->mf); dbg("Product %s\r\n", dev->prod); dbg("SerialNumber %s\r\n", dev->serial); /* now probe if the device is a hub */ usb_hub_probe(dev, 0); driver_mem_free(tmpbuf); return 0; } /* * build device Tree */ void usb_scan_devices(void *priv) { int i; struct usb_device *dev; /* first make all devices unknown */ for (i = 0; i < USB_MAX_DEVICE; i++) { memset(&usb_dev[(bus_index * USB_MAX_DEVICE) + i], 0, sizeof(struct usb_device)); usb_dev[(bus_index * USB_MAX_DEVICE) + i].devnum = -1; } dev_index[bus_index] = 0; /* * device 0 is always present (root hub, so let it analyze) */ dev = usb_alloc_new_device(bus_index, priv); if (usb_new_device(dev)) { xprintf("No USB Device found\r\n"); if (dev != NULL) { dev_index[bus_index]--; } } else { xprintf("%d USB Device(s) found\r\n", dev_index[bus_index]); } /* insert "driver" if possible */ if (drv_usb_kbd_init() < 0) { xprintf("No USB keyboard found\r\n"); } else { xprintf("USB HID keyboard driver installed\r\n"); } if (drv_usb_mouse_init() < 0) { xprintf("No USB mouse found\r\n"); } else { xprintf("USB HID mouse driver installed\r\n"); } xprintf("Scan end\r\n"); }