started testing. BOOTP crashes at ip_send() ?

This commit is contained in:
Markus Fröschle
2013-12-24 12:38:36 +00:00
parent c1ff9a7181
commit 4ec02ea882
13 changed files with 771 additions and 1090 deletions

751
net/arp.c
View File

@@ -13,450 +13,451 @@
static uint8_t *arp_find_pair(ARP_INFO *arptab, uint16_t protocol, uint8_t *hwa, uint8_t *pa)
{
/*
* This function searches through the ARP table for the
* specified <protocol,hwa> or <protocol,pa> address pair.
* If it is found, then a a pointer to the non-specified
* address is returned. Otherwise NULL is returned.
* If you pass in <protocol,pa> then you get <hwa> out.
* If you pass in <protocol,hwa> then you get <pa> out.
*/
int slot, i, match = false;
uint8_t *rvalue;
/*
* This function searches through the ARP table for the
* specified <protocol,hwa> or <protocol,pa> address pair.
* If it is found, then a a pointer to the non-specified
* address is returned. Otherwise NULL is returned.
* If you pass in <protocol,pa> then you get <hwa> out.
* If you pass in <protocol,hwa> then you get <pa> out.
*/
int slot, i, match = false;
uint8_t *rvalue;
if (((hwa == 0) && (pa == 0)) || (arptab == 0))
return NULL;
if (((hwa == 0) && (pa == 0)) || (arptab == 0))
return NULL;
rvalue = NULL;
rvalue = NULL;
/*
* Check each protocol address for a match
*/
for (slot = 0; slot < arptab->tab_size; slot++)
{
if ((arptab->table[slot].longevity != ARP_ENTRY_EMPTY) &&
(arptab->table[slot].protocol == protocol))
{
match = true;
if (hwa != 0)
{
/*
* Check the Hardware Address field
*/
rvalue = &arptab->table[slot].pa[0];
for (i = 0; i < arptab->table[slot].hwa_size; i++)
{
if (arptab->table[slot].hwa[i] != hwa[i])
{
match = false;
break;
}
}
}
else
{
/*
* Check the Protocol Address field
*/
rvalue = &arptab->table[slot].hwa[0];
for (i = 0; i < arptab->table[slot].pa_size; i++)
{
if (arptab->table[slot].pa[i] != pa[i])
{
match = false;
break;
}
}
}
if (match)
{
break;
}
}
}
/*
* Check each protocol address for a match
*/
for (slot = 0; slot < arptab->tab_size; slot++)
{
if ((arptab->table[slot].longevity != ARP_ENTRY_EMPTY) &&
(arptab->table[slot].protocol == protocol))
{
match = true;
if (hwa != 0)
{
/*
* Check the Hardware Address field
*/
rvalue = &arptab->table[slot].pa[0];
for (i = 0; i < arptab->table[slot].hwa_size; i++)
{
if (arptab->table[slot].hwa[i] != hwa[i])
{
match = false;
break;
}
}
}
else
{
/*
* Check the Protocol Address field
*/
rvalue = &arptab->table[slot].hwa[0];
for (i = 0; i < arptab->table[slot].pa_size; i++)
{
if (arptab->table[slot].pa[i] != pa[i])
{
match = false;
break;
}
}
}
if (match)
{
break;
}
}
}
if (match)
return rvalue;
else
return NULL;
if (match)
return rvalue;
else
return NULL;
}
void arp_merge(ARP_INFO *arptab, uint16_t protocol, int hwa_size, uint8_t *hwa,
int pa_size, uint8_t *pa, int longevity)
int pa_size, uint8_t *pa, int longevity)
{
/*
* This function merges an entry into the ARP table. If
* either piece is NULL, the function exits, otherwise
* the entry is merged or added, provided there is space.
*/
int i, slot;
uint8_t *ta;
/*
* This function merges an entry into the ARP table. If
* either piece is NULL, the function exits, otherwise
* the entry is merged or added, provided there is space.
*/
int i, slot;
uint8_t *ta;
if ((hwa == NULL) || (pa == NULL) || (arptab == NULL) ||
((longevity != ARP_ENTRY_TEMP) &&
(longevity != ARP_ENTRY_PERM)))
{
return;
}
if ((hwa == NULL) || (pa == NULL) || (arptab == NULL) ||
((longevity != ARP_ENTRY_TEMP) &&
(longevity != ARP_ENTRY_PERM)))
{
return;
}
/* First search ARP table for existing entry */
if ((ta = arp_find_pair(arptab,protocol,NULL,pa)) != 0)
{
/* Update hardware address */
for (i = 0; i < hwa_size; i++)
ta[i] = hwa[i];
return;
}
/* Next try to find an empty slot */
slot = -1;
for (i = 0; i < MAX_ARP_ENTRY; i++)
{
if (arptab->table[i].longevity == ARP_ENTRY_EMPTY)
{
slot = i;
break;
}
}
/* First search ARP table for existing entry */
if ((ta = arp_find_pair(arptab,protocol,NULL,pa)) != 0)
{
/* Update hardware address */
for (i = 0; i < hwa_size; i++)
ta[i] = hwa[i];
return;
}
/* if no empty slot was found, pick a temp slot */
if (slot == -1)
{
for (i = 0; i < MAX_ARP_ENTRY; i++)
{
if (arptab->table[i].longevity == ARP_ENTRY_TEMP)
{
slot = i;
break;
}
}
}
/* Next try to find an empty slot */
slot = -1;
for (i = 0; i < MAX_ARP_ENTRY; i++)
{
if (arptab->table[i].longevity == ARP_ENTRY_EMPTY)
{
slot = i;
break;
}
}
/* if after all this, still no slot found, add in last slot */
if (slot == -1)
slot = (MAX_ARP_ENTRY - 1);
/* if no empty slot was found, pick a temp slot */
if (slot == -1)
{
for (i = 0; i < MAX_ARP_ENTRY; i++)
{
if (arptab->table[i].longevity == ARP_ENTRY_TEMP)
{
slot = i;
break;
}
}
}
/* add the entry into the slot */
arptab->table[slot].protocol = protocol;
/* if after all this, still no slot found, add in last slot */
if (slot == -1)
slot = (MAX_ARP_ENTRY - 1);
arptab->table[slot].hwa_size = (uint8_t) hwa_size;
for (i = 0; i < hwa_size; i++)
arptab->table[slot].hwa[i] = hwa[i];
/* add the entry into the slot */
arptab->table[slot].protocol = protocol;
arptab->table[slot].pa_size = (uint8_t) pa_size;
for (i = 0; i < pa_size; i++)
arptab->table[slot].pa[i] = pa[i];
arptab->table[slot].hwa_size = (uint8_t) hwa_size;
for (i = 0; i < hwa_size; i++)
arptab->table[slot].hwa[i] = hwa[i];
arptab->table[slot].longevity = longevity;
arptab->table[slot].pa_size = (uint8_t) pa_size;
for (i = 0; i < pa_size; i++)
arptab->table[slot].pa[i] = pa[i];
arptab->table[slot].longevity = longevity;
}
void arp_remove(ARP_INFO *arptab, uint16_t protocol, uint8_t *hwa, uint8_t *pa)
{
/*
* This function removes an entry from the ARP table. The
* ARP table is searched according to the non-NULL address
* that is provided.
*/
int slot, i, match;
/*
* This function removes an entry from the ARP table. The
* ARP table is searched according to the non-NULL address
* that is provided.
*/
int slot, i, match;
if (((hwa == 0) && (pa == 0)) || (arptab == 0))
return;
if (((hwa == 0) && (pa == 0)) || (arptab == 0))
return;
/* check each hardware adress for a match */
for (slot = 0; slot < arptab->tab_size; slot++)
{
if ((arptab->table[slot].longevity != ARP_ENTRY_EMPTY) &&
(arptab->table[slot].protocol == protocol))
{
match = true;
if (hwa != 0)
{
/* Check Hardware Address field */
for (i = 0; i < arptab->table[slot].hwa_size; i++)
{
if (arptab->table[slot].hwa[i] != hwa[i])
{
match = false;
break;
}
}
}
else
{
/* Check Protocol Address field */
for (i = 0; i < arptab->table[slot].pa_size; i++)
{
if (arptab->table[slot].pa[i] != pa[i])
{
match = false;
break;
}
}
}
if (match)
{
for (i = 0; i < arptab->table[slot].hwa_size; i++)
arptab->table[slot].hwa[i] = 0;
for (i = 0; i < arptab->table[slot].pa_size; i++)
arptab->table[slot].pa[i] = 0;
arptab->table[slot].longevity = ARP_ENTRY_EMPTY;
break;
}
}
}
/* check each hardware adress for a match */
for (slot = 0; slot < arptab->tab_size; slot++)
{
if ((arptab->table[slot].longevity != ARP_ENTRY_EMPTY) &&
(arptab->table[slot].protocol == protocol))
{
match = true;
if (hwa != 0)
{
/* Check Hardware Address field */
for (i = 0; i < arptab->table[slot].hwa_size; i++)
{
if (arptab->table[slot].hwa[i] != hwa[i])
{
match = false;
break;
}
}
}
else
{
/* Check Protocol Address field */
for (i = 0; i < arptab->table[slot].pa_size; i++)
{
if (arptab->table[slot].pa[i] != pa[i])
{
match = false;
break;
}
}
}
if (match)
{
for (i = 0; i < arptab->table[slot].hwa_size; i++)
arptab->table[slot].hwa[i] = 0;
for (i = 0; i < arptab->table[slot].pa_size; i++)
arptab->table[slot].pa[i] = 0;
arptab->table[slot].longevity = ARP_ENTRY_EMPTY;
break;
}
}
}
}
void arp_request(NIF *nif, uint8_t *pa)
{
/*
* This function broadcasts an ARP request for the protocol
* address "pa"
*/
uint8_t *addr;
NBUF *pNbuf;
arp_frame_hdr *arpframe;
int i, result;
/*
* This function broadcasts an ARP request for the protocol
* address "pa"
*/
uint8_t *addr;
NBUF *pNbuf;
arp_frame_hdr *arpframe;
int i, result;
pNbuf = nbuf_alloc();
if (pNbuf == NULL)
{
#if defined(DEBUG_PRINT)
printf("ARP: arp_request couldn't allocate Tx buffer\n");
#endif
return;
}
arpframe = (arp_frame_hdr *)&pNbuf->data[ARP_HDR_OFFSET];
xprintf("%s\r\n", __FUNCTION__);
/* Build the ARP request packet */
arpframe->ar_hrd = ETHERNET;
arpframe->ar_pro = ETH_FRM_IP;
arpframe->ar_hln = 6;
arpframe->ar_pln = 4;
arpframe->opcode = ARP_REQUEST;
pNbuf = nbuf_alloc();
if (pNbuf == NULL)
{
xprintf("ARP: arp_request couldn't allocate Tx buffer\n");
return;
}
addr = &nif->hwa[0];
for (i = 0; i < 6; i++)
arpframe->ar_sha[i] = addr[i];
arpframe = (arp_frame_hdr *)&pNbuf->data[ARP_HDR_OFFSET];
addr = ip_get_myip(nif_get_protocol_info(nif,ETH_FRM_IP));
for (i = 0; i < 4; i++)
arpframe->ar_spa[i] = addr[i];
/* Build the ARP request packet */
arpframe->ar_hrd = ETHERNET;
arpframe->ar_pro = ETH_FRM_IP;
arpframe->ar_hln = 6;
arpframe->ar_pln = 4;
arpframe->opcode = ARP_REQUEST;
for (i = 0; i < 6; i++)
arpframe->ar_tha[i] = 0x00;
addr = &nif->hwa[0];
for (i = 0; i < 6; i++)
arpframe->ar_sha[i] = addr[i];
for (i = 0; i < 4; i++)
arpframe->ar_tpa[i] = pa[i];
addr = ip_get_myip(nif_get_protocol_info(nif,ETH_FRM_IP));
for (i = 0; i < 4; i++)
arpframe->ar_spa[i] = addr[i];
pNbuf->length = ARP_HDR_LEN;
for (i = 0; i < 6; i++)
arpframe->ar_tha[i] = 0x00;
/* Send the ARP request */
result = nif->send(nif, nif->broadcast, nif->hwa, ETH_FRM_ARP, pNbuf);
for (i = 0; i < 4; i++)
arpframe->ar_tpa[i] = pa[i];
if (result == 0)
nbuf_free(pNbuf);
pNbuf->length = ARP_HDR_LEN;
/* Send the ARP request */
result = nif->send(nif, nif->broadcast, nif->hwa, ETH_FRM_ARP, pNbuf);
if (result == 0)
nbuf_free(pNbuf);
}
static int arp_resolve_pa(NIF *nif, uint16_t protocol, uint8_t *pa, uint8_t **ha)
{
/*
* This function accepts a pointer to a protocol address and
* searches the ARP table for a hardware address match. If no
* no match found, false is returned.
*/
ARP_INFO *arptab;
/*
* This function accepts a pointer to a protocol address and
* searches the ARP table for a hardware address match. If no
* no match found, false is returned.
*/
ARP_INFO *arptab;
if ((pa == NULL) || (nif == NULL) || (protocol == 0))
return 0;
if ((pa == NULL) || (nif == NULL) || (protocol == 0))
return 0;
arptab = nif_get_protocol_info (nif,ETH_FRM_ARP);
*ha = arp_find_pair(arptab,protocol,0,pa);
arptab = nif_get_protocol_info (nif,ETH_FRM_ARP);
*ha = arp_find_pair(arptab,protocol,0,pa);
if (*ha == NULL)
return 0;
else
return 1;
if (*ha == NULL)
return 0;
else
return 1;
}
uint8_t *arp_resolve(NIF *nif, uint16_t protocol, uint8_t *pa)
{
int i;
uint8_t *hwa;
int i;
uint8_t *hwa;
/*
* Check to see if the necessary MAC-to-IP translation information
* is in table already
*/
if (arp_resolve_pa (nif, protocol, pa, &hwa))
return hwa;
/*
* Check to see if the necessary MAC-to-IP translation information
* is in table already
*/
if (arp_resolve_pa (nif, protocol, pa, &hwa))
return hwa;
/*
* Ok, it's not, so we need to try to obtain it by broadcasting
* an ARP request. Hopefully the desired host is listening and
* will respond with it's MAC address
*/
for (i = 0; i < 3; i++)
{
arp_request (nif, pa);
/*
* Ok, it's not, so we need to try to obtain it by broadcasting
* an ARP request. Hopefully the desired host is listening and
* will respond with it's MAC address
*/
for (i = 0; i < 3; i++)
{
arp_request (nif, pa);
timer_set_secs(TIMER_NETWORK, ARP_TIMEOUT);
while (timer_get_reference(TIMER_NETWORK))
{
if (arp_resolve_pa (nif, protocol, pa, &hwa))
return hwa;
}
}
timer_set_secs(TIMER_NETWORK, ARP_TIMEOUT);
while (timer_get_reference(TIMER_NETWORK))
{
if (arp_resolve_pa (nif, protocol, pa, &hwa))
return hwa;
}
}
return NULL;
return NULL;
}
void arp_init(ARP_INFO *arptab)
{
int slot, i;
int slot, i;
arptab->tab_size = MAX_ARP_ENTRY;
for (slot = 0; slot < arptab->tab_size; slot++)
{
for (i = 0; i < MAX_HWA_SIZE; i++)
arptab->table[slot].hwa[i] = 0;
for (i = 0; i < MAX_PA_SIZE; i++)
arptab->table[slot].pa[i] = 0;
arptab->table[slot].longevity = ARP_ENTRY_EMPTY;
arptab->table[slot].hwa_size = 0;
arptab->table[slot].pa_size = 0;
}
arptab->tab_size = MAX_ARP_ENTRY;
for (slot = 0; slot < arptab->tab_size; slot++)
{
for (i = 0; i < MAX_HWA_SIZE; i++)
arptab->table[slot].hwa[i] = 0;
for (i = 0; i < MAX_PA_SIZE; i++)
arptab->table[slot].pa[i] = 0;
arptab->table[slot].longevity = ARP_ENTRY_EMPTY;
arptab->table[slot].hwa_size = 0;
arptab->table[slot].pa_size = 0;
}
}
void arp_handler(NIF *nif, NBUF *pNbuf)
{
/*
* ARP protocol handler
*/
uint8_t *addr;
ARP_INFO *arptab;
int longevity;
arp_frame_hdr *rx_arpframe, *tx_arpframe;
/*
* ARP protocol handler
*/
uint8_t *addr;
ARP_INFO *arptab;
int longevity;
arp_frame_hdr *rx_arpframe, *tx_arpframe;
arptab = nif_get_protocol_info(nif, ETH_FRM_ARP);
rx_arpframe = (arp_frame_hdr *) &pNbuf->data[pNbuf->offset];
arptab = nif_get_protocol_info(nif, ETH_FRM_ARP);
rx_arpframe = (arp_frame_hdr *) &pNbuf->data[pNbuf->offset];
/*
* Check for an appropriate ARP packet
*/
if ((pNbuf->length < ARP_HDR_LEN) ||
(rx_arpframe->ar_hrd != ETHERNET) ||
(rx_arpframe->ar_hln != 6) ||
(rx_arpframe->ar_pro != ETH_FRM_IP) ||
(rx_arpframe->ar_pln != 4))
{
nbuf_free(pNbuf);
return;
}
/*
* Check for an appropriate ARP packet
*/
if ((pNbuf->length < ARP_HDR_LEN) ||
(rx_arpframe->ar_hrd != ETHERNET) ||
(rx_arpframe->ar_hln != 6) ||
(rx_arpframe->ar_pro != ETH_FRM_IP) ||
(rx_arpframe->ar_pln != 4))
{
nbuf_free(pNbuf);
return;
}
/*
* Check to see if it was addressed to me - if it was, keep this
* ARP entry in the table permanently; if not, mark it so that it
* can be displaced later if necessary
*/
addr = ip_get_myip(nif_get_protocol_info(nif,ETH_FRM_IP));
if ((rx_arpframe->ar_tpa[0] == addr[0]) &&
(rx_arpframe->ar_tpa[1] == addr[1]) &&
(rx_arpframe->ar_tpa[2] == addr[2]) &&
(rx_arpframe->ar_tpa[3] == addr[3]) )
{
longevity = ARP_ENTRY_PERM;
}
else
longevity = ARP_ENTRY_TEMP;
/*
* Check to see if it was addressed to me - if it was, keep this
* ARP entry in the table permanently; if not, mark it so that it
* can be displaced later if necessary
*/
addr = ip_get_myip(nif_get_protocol_info(nif,ETH_FRM_IP));
if ((rx_arpframe->ar_tpa[0] == addr[0]) &&
(rx_arpframe->ar_tpa[1] == addr[1]) &&
(rx_arpframe->ar_tpa[2] == addr[2]) &&
(rx_arpframe->ar_tpa[3] == addr[3]) )
{
longevity = ARP_ENTRY_PERM;
}
else
longevity = ARP_ENTRY_TEMP;
/*
* Add ARP info into the table
*/
arp_merge(arptab,
rx_arpframe->ar_pro,
rx_arpframe->ar_hln,
&rx_arpframe->ar_sha[0],
rx_arpframe->ar_pln,
&rx_arpframe->ar_spa[0],
longevity
);
/*
* Add ARP info into the table
*/
arp_merge(arptab,
rx_arpframe->ar_pro,
rx_arpframe->ar_hln,
&rx_arpframe->ar_sha[0],
rx_arpframe->ar_pln,
&rx_arpframe->ar_spa[0],
longevity
);
switch (rx_arpframe->opcode)
{
case ARP_REQUEST:
/*
* Check to see if request is directed to me
*/
if ((rx_arpframe->ar_tpa[0] == addr[0]) &&
(rx_arpframe->ar_tpa[1] == addr[1]) &&
(rx_arpframe->ar_tpa[2] == addr[2]) &&
(rx_arpframe->ar_tpa[3] == addr[3]) )
{
/*
* Reuse the current network buffer to assemble an ARP reply
*/
tx_arpframe = (arp_frame_hdr *)&pNbuf->data[ARP_HDR_OFFSET];
switch (rx_arpframe->opcode)
{
case ARP_REQUEST:
/*
* Check to see if request is directed to me
*/
if ((rx_arpframe->ar_tpa[0] == addr[0]) &&
(rx_arpframe->ar_tpa[1] == addr[1]) &&
(rx_arpframe->ar_tpa[2] == addr[2]) &&
(rx_arpframe->ar_tpa[3] == addr[3]) )
{
/*
* Reuse the current network buffer to assemble an ARP reply
*/
tx_arpframe = (arp_frame_hdr *)&pNbuf->data[ARP_HDR_OFFSET];
/*
* Build new ARP frame from the received data
*/
tx_arpframe->ar_hrd = ETHERNET;
tx_arpframe->ar_pro = ETH_FRM_IP;
tx_arpframe->ar_hln = 6;
tx_arpframe->ar_pln = 4;
tx_arpframe->opcode = ARP_REPLY;
tx_arpframe->ar_tha[0] = rx_arpframe->ar_sha[0];
tx_arpframe->ar_tha[1] = rx_arpframe->ar_sha[1];
tx_arpframe->ar_tha[2] = rx_arpframe->ar_sha[2];
tx_arpframe->ar_tha[3] = rx_arpframe->ar_sha[3];
tx_arpframe->ar_tha[4] = rx_arpframe->ar_sha[4];
tx_arpframe->ar_tha[5] = rx_arpframe->ar_sha[5];
tx_arpframe->ar_tpa[0] = rx_arpframe->ar_spa[0];
tx_arpframe->ar_tpa[1] = rx_arpframe->ar_spa[1];
tx_arpframe->ar_tpa[2] = rx_arpframe->ar_spa[2];
tx_arpframe->ar_tpa[3] = rx_arpframe->ar_spa[3];
/*
* Build new ARP frame from the received data
*/
tx_arpframe->ar_hrd = ETHERNET;
tx_arpframe->ar_pro = ETH_FRM_IP;
tx_arpframe->ar_hln = 6;
tx_arpframe->ar_pln = 4;
tx_arpframe->opcode = ARP_REPLY;
tx_arpframe->ar_tha[0] = rx_arpframe->ar_sha[0];
tx_arpframe->ar_tha[1] = rx_arpframe->ar_sha[1];
tx_arpframe->ar_tha[2] = rx_arpframe->ar_sha[2];
tx_arpframe->ar_tha[3] = rx_arpframe->ar_sha[3];
tx_arpframe->ar_tha[4] = rx_arpframe->ar_sha[4];
tx_arpframe->ar_tha[5] = rx_arpframe->ar_sha[5];
tx_arpframe->ar_tpa[0] = rx_arpframe->ar_spa[0];
tx_arpframe->ar_tpa[1] = rx_arpframe->ar_spa[1];
tx_arpframe->ar_tpa[2] = rx_arpframe->ar_spa[2];
tx_arpframe->ar_tpa[3] = rx_arpframe->ar_spa[3];
/*
* Now copy in the new information
*/
addr = &nif->hwa[0];
tx_arpframe->ar_sha[0] = addr[0];
tx_arpframe->ar_sha[1] = addr[1];
tx_arpframe->ar_sha[2] = addr[2];
tx_arpframe->ar_sha[3] = addr[3];
tx_arpframe->ar_sha[4] = addr[4];
tx_arpframe->ar_sha[5] = addr[5];
/*
* Now copy in the new information
*/
addr = &nif->hwa[0];
tx_arpframe->ar_sha[0] = addr[0];
tx_arpframe->ar_sha[1] = addr[1];
tx_arpframe->ar_sha[2] = addr[2];
tx_arpframe->ar_sha[3] = addr[3];
tx_arpframe->ar_sha[4] = addr[4];
tx_arpframe->ar_sha[5] = addr[5];
addr = ip_get_myip(nif_get_protocol_info(nif,ETH_FRM_IP));
tx_arpframe->ar_spa[0] = addr[0];
tx_arpframe->ar_spa[1] = addr[1];
tx_arpframe->ar_spa[2] = addr[2];
tx_arpframe->ar_spa[3] = addr[3];
addr = ip_get_myip(nif_get_protocol_info(nif,ETH_FRM_IP));
tx_arpframe->ar_spa[0] = addr[0];
tx_arpframe->ar_spa[1] = addr[1];
tx_arpframe->ar_spa[2] = addr[2];
tx_arpframe->ar_spa[3] = addr[3];
/*
* Save the length of my packet in the buffer structure
*/
pNbuf->length = ARP_HDR_LEN;
nif->send(nif,
&tx_arpframe->ar_tha[0],
&tx_arpframe->ar_sha[0],
ETH_FRM_ARP,
pNbuf);
}
else
nbuf_free(pNbuf);
break;
case ARP_REPLY:
/*
* The ARP Reply case is already taken care of
*/
default:
nbuf_free(pNbuf);
break;
}
/*
* Save the length of my packet in the buffer structure
*/
pNbuf->length = ARP_HDR_LEN;
return;
nif->send(nif,
&tx_arpframe->ar_tha[0],
&tx_arpframe->ar_sha[0],
ETH_FRM_ARP,
pNbuf);
}
else
nbuf_free(pNbuf);
break;
case ARP_REPLY:
/*
* The ARP Reply case is already taken care of
*/
default:
nbuf_free(pNbuf);
break;
}
return;
}

View File

@@ -56,15 +56,22 @@ void bootp_request(NIF *nif, uint8_t *pa)
nbuf->length = BOOTP_PACKET_LEN;
/* setup reply handler */
udp_bind_port(BOOTP_CLIENT_PORT, bootp_handler);
for (i = 0; i < MAX_TRIES; i++)
{
/* Send the BOOTP request */
result = udp_send(connection.nif, broadcast, BOOTP_CLIENT_PORT,
BOOTP_SERVER_PORT, nbuf);
xprintf("sent bootp request\r\n");
if (result == true)
break;
}
/* release handler */
udp_free_port(BOOTP_CLIENT_PORT);
if (result == 0)
nbuf_free(nbuf);
}
@@ -85,6 +92,7 @@ void bootp_handler(NIF *nif, NBUF *nbuf)
if (rx_p->type == BOOTP_TYPE_BOOTREPLY && rx_p->xid == XID)
{
xprintf("received bootp reply\r\n");
/* seems to be valid */
}

View File

@@ -1025,7 +1025,7 @@ void fec1_tx_frame(void)
* 1 success
* 0 otherwise
*/
int fec_send (uint8_t ch, NIF *nif, uint8_t *dst, uint8_t *src, uint16_t type, NBUF *nbuf)
int fec_send(uint8_t ch, NIF *nif, uint8_t *dst, uint8_t *src, uint16_t type, NBUF *nbuf)
{
FECBD *pTxBD;

View File

@@ -147,20 +147,21 @@ int ip_send(NIF *nif, uint8_t *dest, uint8_t *src, uint8_t protocol, NBUF *pNbuf
/*
* Determine the hardware address of the recipient
*/
route = ip_resolve_route(nif, dest);
if (route == NULL)
{
xprintf("Unable to locate %d.%d.%d.%d\n",
dest[0], dest[1], dest[2], dest[3]);
return 0;
}
IP_ADDR bc = { 255, 255, 255, 255};
if (memcmp(bc, dest, 4) != 0)
{
route = ip_resolve_route(nif, dest);
if (route == NULL)
{
xprintf("Unable to locate %d.%d.%d.%d\n",
dest[0], dest[1], dest[2], dest[3]);
return 0;
}
}
else
route = bc;
return nif->send(nif,
route,
&nif->hwa[0],
ETH_FRM_IP,
pNbuf
);
return nif->send(nif, route, &nif->hwa[0], ETH_FRM_IP, pNbuf);
}
#if defined(DEBUG_PRINT)

View File

@@ -1,213 +1,211 @@
/*
* File: nbuf.c
* Purpose: Implementation of network buffer scheme.
*
* Notes:
*/
#include "queue.h"
#include "net.h"
#include "driver_mem.h"
#include "exceptions.h"
#include "bas_types.h"
#include "bas_printf.h"
/*
* Queues used for network buffer storage
*/
QUEUE nbuf_queue[NBUF_MAXQ];
/*
* Some devices require line-aligned buffers. In order to accomplish
* this, the nbuf data is over-allocated and adjusted. The following
* array keeps track of the original data pointer returned by malloc
*/
uint8_t *unaligned_buffers[NBUF_MAX];
/*
* Initialize all the network buffer queues
*
* Return Value:
* 0 success
* 1 failure
*/
int nbuf_init(void)
{
int i;
NBUF *nbuf;
for (i=0; i<NBUF_MAXQ; ++i)
{
/* Initialize all the queues */
queue_init(&nbuf_queue[i]);
}
#ifdef DEBUG_PRINT
printf("Creating %d net buffers of %d bytes\n",NBUF_MAX,NBUF_SZ);
#endif
for (i = 0; i < NBUF_MAX; ++i)
{
/* Allocate memory for the network buffer structure */
nbuf = (NBUF *) driver_mem_alloc(sizeof(NBUF));
if (!nbuf)
{
return 1;
}
/* Allocate memory for the actual data */
unaligned_buffers[i] = driver_mem_alloc(NBUF_SZ + 16);
nbuf->data = (uint8_t *)((uint32_t)(unaligned_buffers[i] + 15) & 0xFFFFFFF0);
if (!nbuf->data)
{
return 1;
}
/* Initialize the network buffer */
nbuf->offset = 0;
nbuf->length = 0;
/* Add the network buffer to the free list */
queue_add(&nbuf_queue[NBUF_FREE], (QNODE *)nbuf);
}
#ifdef DEBUG_PRINT
printf("NBUF allocation complete\n");
nbuf_debug_dump();
#endif
return 0;
}
/*
* Return all the allocated memory to the heap
*/
void nbuf_flush(void)
{
NBUF *nbuf;
int i, level = set_ipl(7);
int n = 0;
for (i = 0; i < NBUF_MAX; ++i)
driver_mem_free((uint8_t *) unaligned_buffers[i]);
for (i = 0; i < NBUF_MAXQ; ++i)
{
while ((nbuf = (NBUF *) queue_remove(&nbuf_queue[i])) != NULL)
{
driver_mem_free(nbuf);
++n;
}
}
set_ipl(level);
}
/*
* Allocate a network buffer from the free list
*
* Return Value:
* Pointer to a free network buffer
* NULL if none are available
*/
NBUF *nbuf_alloc(void)
{
NBUF *nbuf;
int level = set_ipl(7);
nbuf = (NBUF *) queue_remove(&nbuf_queue[NBUF_FREE]);
set_ipl(level);
return nbuf;
}
/*
* Add the specified network buffer back to the free list
*
* Parameters:
* nbuf Buffer to add back to the free list
*/
void nbuf_free(NBUF *nbuf)
{
int level = set_ipl(7);
nbuf->offset = 0;
nbuf->length = NBUF_SZ;
queue_add(&nbuf_queue[NBUF_FREE],(QNODE *)nbuf);
set_ipl(level);
}
/*
* Remove a network buffer from the specified queue
*
* Parameters:
* q The index that identifies the queue to pull the buffer from
*/
NBUF *nbuf_remove(int q)
{
NBUF *nbuf;
int level = set_ipl(7);
nbuf = (NBUF *) queue_remove(&nbuf_queue[q]);
set_ipl(level);
return nbuf;
}
/*
* Add a network buffer to the specified queue
*
* Parameters:
* q The index that identifies the queue to add the buffer to
*/
void nbuf_add(int q, NBUF *nbuf)
{
int level = set_ipl(7);
queue_add(&nbuf_queue[q],(QNODE *)nbuf);
set_ipl(level);
}
/*
* Put all the network buffers back into the free list
*/
void nbuf_reset(void)
{
NBUF *nbuf;
int i, level = set_ipl(7);
for (i = 1; i < NBUF_MAXQ; ++i)
{
while ((nbuf = nbuf_remove(i)) != NULL)
nbuf_free(nbuf);
}
set_ipl(level);
}
/*
* Display all the nbuf queues
*/
void nbuf_debug_dump(void)
{
#ifdef DEBUG
NBUF *nbuf;
int i, j, level;
level = set_ipl(7);
for (i = 0; i < NBUF_MAXQ; ++i)
{
printf("\n\nQueue #%d\n\n",i);
printf("\tBuffer Location\tOffset\tLength\n");
printf("--------------------------------------\n");
j = 0;
nbuf = (NBUF *)queue_peek(&nbuf_queue[i]);
while (nbuf != NULL)
{
printf("%d\t 0x%08x\t0x%04x\t0x%04x\n",j++,nbuf->data,
nbuf->offset,
nbuf->length);
nbuf = (NBUF *)nbuf->node.next;
}
}
set_ipl(level);
#endif
}
/*
* File: nbuf.c
* Purpose: Implementation of network buffer scheme.
*
* Notes:
*/
#include "queue.h"
#include "net.h"
#include "driver_mem.h"
#include "exceptions.h"
#include "bas_types.h"
#include "bas_printf.h"
/*
* Queues used for network buffer storage
*/
QUEUE nbuf_queue[NBUF_MAXQ];
/*
* Some devices require line-aligned buffers. In order to accomplish
* this, the nbuf data is over-allocated and adjusted. The following
* array keeps track of the original data pointer returned by malloc
*/
uint8_t *unaligned_buffers[NBUF_MAX];
/*
* Initialize all the network buffer queues
*
* Return Value:
* 0 success
* 1 failure
*/
int nbuf_init(void)
{
int i;
NBUF *nbuf;
for (i=0; i<NBUF_MAXQ; ++i)
{
/* Initialize all the queues */
queue_init(&nbuf_queue[i]);
}
#ifdef DEBUG_PRINT
printf("Creating %d net buffers of %d bytes\n",NBUF_MAX,NBUF_SZ);
#endif
for (i = 0; i < NBUF_MAX; ++i)
{
/* Allocate memory for the network buffer structure */
nbuf = (NBUF *) driver_mem_alloc(sizeof(NBUF));
if (!nbuf)
{
xprintf("failed to allocate nbuf\r\n");
return 1;
}
/* Allocate memory for the actual data */
unaligned_buffers[i] = driver_mem_alloc(NBUF_SZ + 16);
nbuf->data = (uint8_t *)((uint32_t)(unaligned_buffers[i] + 15) & 0xFFFFFFF0);
if (!nbuf->data)
{
return 1;
}
/* Initialize the network buffer */
nbuf->offset = 0;
nbuf->length = 0;
/* Add the network buffer to the free list */
queue_add(&nbuf_queue[NBUF_FREE], (QNODE *)nbuf);
}
xprintf("NBUF allocation complete\n");
return 0;
}
/*
* Return all the allocated memory to the heap
*/
void nbuf_flush(void)
{
NBUF *nbuf;
int i, level = set_ipl(7);
int n = 0;
for (i = 0; i < NBUF_MAX; ++i)
driver_mem_free((uint8_t *) unaligned_buffers[i]);
for (i = 0; i < NBUF_MAXQ; ++i)
{
while ((nbuf = (NBUF *) queue_remove(&nbuf_queue[i])) != NULL)
{
driver_mem_free(nbuf);
++n;
}
}
set_ipl(level);
}
/*
* Allocate a network buffer from the free list
*
* Return Value:
* Pointer to a free network buffer
* NULL if none are available
*/
NBUF *nbuf_alloc(void)
{
NBUF *nbuf;
int level = set_ipl(7);
nbuf = (NBUF *) queue_remove(&nbuf_queue[NBUF_FREE]);
set_ipl(level);
return nbuf;
}
/*
* Add the specified network buffer back to the free list
*
* Parameters:
* nbuf Buffer to add back to the free list
*/
void nbuf_free(NBUF *nbuf)
{
int level = set_ipl(7);
nbuf->offset = 0;
nbuf->length = NBUF_SZ;
queue_add(&nbuf_queue[NBUF_FREE],(QNODE *)nbuf);
set_ipl(level);
}
/*
* Remove a network buffer from the specified queue
*
* Parameters:
* q The index that identifies the queue to pull the buffer from
*/
NBUF *nbuf_remove(int q)
{
NBUF *nbuf;
int level = set_ipl(7);
nbuf = (NBUF *) queue_remove(&nbuf_queue[q]);
set_ipl(level);
return nbuf;
}
/*
* Add a network buffer to the specified queue
*
* Parameters:
* q The index that identifies the queue to add the buffer to
*/
void nbuf_add(int q, NBUF *nbuf)
{
int level = set_ipl(7);
queue_add(&nbuf_queue[q],(QNODE *)nbuf);
set_ipl(level);
}
/*
* Put all the network buffers back into the free list
*/
void nbuf_reset(void)
{
NBUF *nbuf;
int i, level = set_ipl(7);
for (i = 1; i < NBUF_MAXQ; ++i)
{
while ((nbuf = nbuf_remove(i)) != NULL)
nbuf_free(nbuf);
}
set_ipl(level);
}
/*
* Display all the nbuf queues
*/
void nbuf_debug_dump(void)
{
#ifdef DEBUG
NBUF *nbuf;
int i, j, level;
level = set_ipl(7);
for (i = 0; i < NBUF_MAXQ; ++i)
{
printf("\n\nQueue #%d\n\n",i);
printf("\tBuffer Location\tOffset\tLength\n");
printf("--------------------------------------\n");
j = 0;
nbuf = (NBUF *)queue_peek(&nbuf_queue[i]);
while (nbuf != NULL)
{
printf("%d\t 0x%08x\t0x%04x\t0x%04x\n",j++,nbuf->data,
nbuf->offset,
nbuf->length);
nbuf = (NBUF *)nbuf->node.next;
}
}
set_ipl(level);
#endif
}

154
net/nif.c
View File

@@ -14,105 +14,105 @@
int nif_protocol_exist(NIF *nif, uint16_t protocol)
{
/*
* This function searches the list of supported protocols
* on the particular NIF and if a protocol handler exists,
* true is returned. This function is useful for network cards
* that needn't read in the entire frame but can discard frames
* arbitrarily.
*/
int index;
/*
* This function searches the list of supported protocols
* on the particular NIF and if a protocol handler exists,
* true is returned. This function is useful for network cards
* that needn't read in the entire frame but can discard frames
* arbitrarily.
*/
int index;
for (index = 0; index < nif->num_protocol; ++index)
{
if (nif->protocol[index].protocol == protocol)
{
return true;
}
}
return false;
for (index = 0; index < nif->num_protocol; ++index)
{
if (nif->protocol[index].protocol == protocol)
{
return true;
}
}
return false;
}
void nif_protocol_handler(NIF *nif, uint16_t protocol, NBUF *pNbuf)
{
/*
* This function searches the list of supported protocols
* on the particular NIF and if a protocol handler exists,
* the protocol handler is invoked. This routine called by
* network device driver after receiving a frame.
*/
int index;
/*
* This function searches the list of supported protocols
* on the particular NIF and if a protocol handler exists,
* the protocol handler is invoked. This routine called by
* network device driver after receiving a frame.
*/
int index;
for (index = 0; index < nif->num_protocol; ++index)
{
if (nif->protocol[index].protocol == protocol)
nif->protocol[index].handler(nif,pNbuf);
}
for (index = 0; index < nif->num_protocol; ++index)
{
if (nif->protocol[index].protocol == protocol)
nif->protocol[index].handler(nif,pNbuf);
}
}
void *nif_get_protocol_info (NIF *nif, uint16_t protocol)
{
/*
* This function searches the list of supported protocols
* on the particular NIF and returns a pointer to the
* config info for 'protocol', otherwise NULL is returned.
*/
int index;
/*
* This function searches the list of supported protocols
* on the particular NIF and returns a pointer to the
* config info for 'protocol', otherwise NULL is returned.
*/
int index;
for (index = 0; index < nif->num_protocol; ++index)
{
if (nif->protocol[index].protocol == protocol)
return (void *)nif->protocol[index].info;
}
return (void *)0;
for (index = 0; index < nif->num_protocol; ++index)
{
if (nif->protocol[index].protocol == protocol)
return (void *)nif->protocol[index].info;
}
return (void *)0;
}
int nif_bind_protocol (NIF *nif, uint16_t protocol,
void (*handler)(NIF *,NBUF *),
void *info)
void (*handler)(NIF *,NBUF *),
void *info)
{
/*
* This function registers 'protocol' as a supported
* protocol in 'nif'.
*/
if (nif->num_protocol < (MAX_SUP_PROTO - 1))
{
nif->protocol[nif->num_protocol].protocol = protocol;
nif->protocol[nif->num_protocol].handler = (void(*)(NIF*,NBUF*))handler;
nif->protocol[nif->num_protocol].info = info;
++nif->num_protocol;
return true;
}
return false;
/*
* This function registers 'protocol' as a supported
* protocol in 'nif'.
*/
if (nif->num_protocol < (MAX_SUP_PROTO - 1))
{
nif->protocol[nif->num_protocol].protocol = protocol;
nif->protocol[nif->num_protocol].handler = (void(*)(NIF*,NBUF*))handler;
nif->protocol[nif->num_protocol].info = info;
++nif->num_protocol;
return true;
}
return false;
}
NIF *nif_init (NIF *nif)
{
int i;
int i;
for (i = 0; i < ETH_ADDR_LEN; ++i)
{
nif->hwa[i] = 0;
nif->broadcast[i] = 0xFF;
}
for (i = 0; i < ETH_ADDR_LEN; ++i)
{
nif->hwa[i] = 0;
nif->broadcast[i] = 0xFF;
}
for (i = 0; i < MAX_SUP_PROTO; ++i)
{
nif->protocol[i].protocol = 0;
nif->protocol[i].handler = 0;
nif->protocol[i].info = 0;
}
nif->num_protocol = 0;
for (i = 0; i < MAX_SUP_PROTO; ++i)
{
nif->protocol[i].protocol = 0;
nif->protocol[i].handler = 0;
nif->protocol[i].info = 0;
}
nif->num_protocol = 0;
nif->mtu = 0;
nif->ch = 0;
nif->send = 0;
nif->mtu = 0;
nif->ch = 0;
nif->send = 0;
nif->f_rx = 0;
nif->f_tx = 0;
nif->f_rx_err = 0;
nif->f_tx_err = 0;
nif->f_err = 0;
nif->f_rx = 0;
nif->f_tx = 0;
nif->f_rx_err = 0;
nif->f_tx_err = 0;
nif->f_err = 0;
return nif;
return nif;
}